Metamath Proof Explorer


Theorem ballotlemgval

Description: Expand the value of .^ . (Contributed by Thierry Arnoux, 21-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
ballotlemg ×˙=uFin,vFinvuvu
Assertion ballotlemgval UFinVFinU×˙V=VUVU

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 ballotlemg ×˙=uFin,vFinvuvu
12 ineq2 u=Uvu=vU
13 12 fveq2d u=Uvu=vU
14 difeq2 u=Uvu=vU
15 14 fveq2d u=Uvu=vU
16 13 15 oveq12d u=Uvuvu=vUvU
17 ineq1 v=VvU=VU
18 17 fveq2d v=VvU=VU
19 difeq1 v=VvU=VU
20 19 fveq2d v=VvU=VU
21 18 20 oveq12d v=VvUvU=VUVU
22 ovex VUVUV
23 16 21 11 22 ovmpo UFinVFinU×˙V=VUVU