Metamath Proof Explorer


Theorem ballotlemrinv

Description: R is its own inverse : it is an involution. (Contributed by Thierry Arnoux, 10-Apr-2017)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
ballotth.p P=x𝒫OxO
ballotth.f F=cOi1ic1ic
ballotth.e E=cO|i1M+N0<Fci
ballotth.mgtn N<M
ballotth.i I=cOEsupk1M+N|Fck=0<
ballotth.s S=cOEi1M+NifiIcIc+1-ii
ballotth.r R=cOEScc
Assertion ballotlemrinv R-1=R

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ballotth.p P=x𝒫OxO
5 ballotth.f F=cOi1ic1ic
6 ballotth.e E=cO|i1M+N0<Fci
7 ballotth.mgtn N<M
8 ballotth.i I=cOEsupk1M+N|Fck=0<
9 ballotth.s S=cOEi1M+NifiIcIc+1-ii
10 ballotth.r R=cOEScc
11 1 2 3 4 5 6 7 8 9 10 ballotlemrinv0 cOEd=SccdOEc=Sdd
12 1 2 3 4 5 6 7 8 9 10 ballotlemrinv0 dOEc=SddcOEd=Scc
13 11 12 impbii cOEd=SccdOEc=Sdd
14 13 a1i cOEd=SccdOEc=Sdd
15 14 mptcnv cOEScc-1=dOESdd
16 15 mptru cOEScc-1=dOESdd
17 fveq2 d=cSd=Sc
18 id d=cd=c
19 17 18 imaeq12d d=cSdd=Scc
20 19 cbvmptv dOESdd=cOEScc
21 16 20 eqtri cOEScc-1=cOEScc
22 10 cnveqi R-1=cOEScc-1
23 21 22 10 3eqtr4i R-1=R