Metamath Proof Explorer


Theorem bcrpcl

Description: Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 .) (Contributed by Mario Carneiro, 10-Mar-2014)

Ref Expression
Assertion bcrpcl K0N(NK)+

Proof

Step Hyp Ref Expression
1 bcval2 K0N(NK)=N!NK!K!
2 elfz3nn0 K0NN0
3 2 faccld K0NN!
4 fznn0sub K0NNK0
5 elfznn0 K0NK0
6 faccl NK0NK!
7 faccl K0K!
8 nnmulcl NK!K!NK!K!
9 6 7 8 syl2an NK0K0NK!K!
10 4 5 9 syl2anc K0NNK!K!
11 nnrp N!N!+
12 nnrp NK!K!NK!K!+
13 rpdivcl N!+NK!K!+N!NK!K!+
14 11 12 13 syl2an N!NK!K!N!NK!K!+
15 3 10 14 syl2anc K0NN!NK!K!+
16 1 15 eqeltrd K0N(NK)+