Metamath Proof Explorer


Theorem bitr4d

Description: Deduction form of bitr4i . (Contributed by NM, 30-Jun-1993)

Ref Expression
Hypotheses bitr4d.1 φ ψ χ
bitr4d.2 φ θ χ
Assertion bitr4d φ ψ θ

Proof

Step Hyp Ref Expression
1 bitr4d.1 φ ψ χ
2 bitr4d.2 φ θ χ
3 2 bicomd φ χ θ
4 1 3 bitrd φ ψ θ