Database
CLASSICAL FIRST-ORDER LOGIC WITH EQUALITY
Propositional calculus
Logical equivalence
bitr4d
Next ⟩
bitrid
Metamath Proof Explorer
Ascii
Unicode
Theorem
bitr4d
Description:
Deduction form of
bitr4i
.
(Contributed by
NM
, 30-Jun-1993)
Ref
Expression
Hypotheses
bitr4d.1
⊢
φ
→
ψ
↔
χ
bitr4d.2
⊢
φ
→
θ
↔
χ
Assertion
bitr4d
⊢
φ
→
ψ
↔
θ
Proof
Step
Hyp
Ref
Expression
1
bitr4d.1
⊢
φ
→
ψ
↔
χ
2
bitr4d.2
⊢
φ
→
θ
↔
χ
3
2
bicomd
⊢
φ
→
χ
↔
θ
4
1
3
bitrd
⊢
φ
→
ψ
↔
θ