Metamath Proof Explorer


Theorem bitsval

Description: Expand the definition of the bits of an integer. (Contributed by Mario Carneiro, 5-Sep-2016)

Ref Expression
Assertion bitsval MbitsNNM0¬2N2M

Proof

Step Hyp Ref Expression
1 df-bits bits=nm0|¬2n2m
2 1 mptrcl MbitsNN
3 bitsfval NbitsN=m0|¬2N2m
4 3 eleq2d NMbitsNMm0|¬2N2m
5 oveq2 m=M2m=2M
6 5 oveq2d m=MN2m=N2M
7 6 fveq2d m=MN2m=N2M
8 7 breq2d m=M2N2m2N2M
9 8 notbid m=M¬2N2m¬2N2M
10 9 elrab Mm0|¬2N2mM0¬2N2M
11 4 10 bitrdi NMbitsNM0¬2N2M
12 2 11 biadanii MbitsNNM0¬2N2M
13 3anass NM0¬2N2MNM0¬2N2M
14 12 13 bitr4i MbitsNNM0¬2N2M