Metamath Proof Explorer


Theorem bj-fvimacnv0

Description: Variant of fvimacnv where membership of A in the domain is not needed provided the containing class B does not contain the empty set. Note that this antecedent would not be needed with Definition df-afv . (Contributed by BJ, 7-Jan-2024)

Ref Expression
Assertion bj-fvimacnv0 Fun F ¬ B F A B A F -1 B

Proof

Step Hyp Ref Expression
1 eleq1 F A = F A B B
2 1 biimpcd F A B F A = B
3 2 con3rr3 ¬ B F A B ¬ F A =
4 3 imp ¬ B F A B ¬ F A =
5 ndmfv ¬ A dom F F A =
6 4 5 nsyl2 ¬ B F A B A dom F
7 simpr ¬ B F A B F A B
8 fvimacnv Fun F A dom F F A B A F -1 B
9 8 biimpd Fun F A dom F F A B A F -1 B
10 9 ex Fun F A dom F F A B A F -1 B
11 10 com3l A dom F F A B Fun F A F -1 B
12 6 7 11 sylc ¬ B F A B Fun F A F -1 B
13 12 ex ¬ B F A B Fun F A F -1 B
14 13 com3r Fun F ¬ B F A B A F -1 B
15 14 imp Fun F ¬ B F A B A F -1 B
16 fvimacnvi Fun F A F -1 B F A B
17 16 ex Fun F A F -1 B F A B
18 17 adantr Fun F ¬ B A F -1 B F A B
19 15 18 impbid Fun F ¬ B F A B A F -1 B