Metamath Proof Explorer


Theorem bj-isclm

Description: The predicate "is a subcomplex module". (Contributed by BJ, 6-Jan-2024)

Ref Expression
Hypotheses bj-isclm.scal φF=ScalarW
bj-isclm.base φK=BaseF
Assertion bj-isclm φWCModWLModF=fld𝑠KKSubRingfld

Proof

Step Hyp Ref Expression
1 bj-isclm.scal φF=ScalarW
2 bj-isclm.base φK=BaseF
3 eqid ScalarW=ScalarW
4 eqid BaseScalarW=BaseScalarW
5 3 4 isclm WCModWLModScalarW=fld𝑠BaseScalarWBaseScalarWSubRingfld
6 1 eqcomd φScalarW=F
7 fveq2 F=ScalarWBaseF=BaseScalarW
8 eqtr K=BaseFBaseF=BaseScalarWK=BaseScalarW
9 8 eqcomd K=BaseFBaseF=BaseScalarWBaseScalarW=K
10 9 ex K=BaseFBaseF=BaseScalarWBaseScalarW=K
11 2 7 10 syl2im φF=ScalarWBaseScalarW=K
12 1 11 mpd φBaseScalarW=K
13 12 oveq2d φfld𝑠BaseScalarW=fld𝑠K
14 6 13 eqeq12d φScalarW=fld𝑠BaseScalarWF=fld𝑠K
15 12 eleq1d φBaseScalarWSubRingfldKSubRingfld
16 14 15 3anbi23d φWLModScalarW=fld𝑠BaseScalarWBaseScalarWSubRingfldWLModF=fld𝑠KKSubRingfld
17 5 16 bitrid φWCModWLModF=fld𝑠KKSubRingfld