Metamath Proof Explorer


Theorem bj-isrvec

Description: The predicate "is a real vector space". Using df-sca instead of scaid would shorten the proof by two syntactic steps, but it is preferable not to rely on the precise definition df-sca . (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-isrvec VℝVecVLModScalarV=fld

Proof

Step Hyp Ref Expression
1 df-bj-rvec ℝVec=LModScalar-1fld
2 1 elin2 VℝVecVLModVScalar-1fld
3 scaid Scalar=SlotScalarndx
4 3 slotfn ScalarFnV
5 df-fn ScalarFnVFunScalardomScalar=V
6 4 5 mpbi FunScalardomScalar=V
7 elex VLModVV
8 eleq2 domScalar=VVdomScalarVV
9 7 8 syl5ibrcom VLModdomScalar=VVdomScalar
10 9 anim2d VLModFunScalardomScalar=VFunScalarVdomScalar
11 6 10 mpi VLModFunScalarVdomScalar
12 fvimacnv FunScalarVdomScalarScalarVfldVScalar-1fld
13 11 12 syl VLModScalarVfldVScalar-1fld
14 fvex ScalarVV
15 14 elsn ScalarVfldScalarV=fld
16 13 15 bitr3di VLModVScalar-1fldScalarV=fld
17 16 pm5.32i VLModVScalar-1fldVLModScalarV=fld
18 2 17 bitri VℝVecVLModScalarV=fld