Metamath Proof Explorer


Theorem bj-isrvec

Description: The predicate "is a real vector space". Using df-sca instead of scaid would shorten the proof by two syntactic steps, but it is preferable not to rely on the precise definition df-sca . (Contributed by BJ, 6-Jan-2024)

Ref Expression
Assertion bj-isrvec V ℝVec V LMod Scalar V = fld

Proof

Step Hyp Ref Expression
1 df-bj-rvec ℝVec = LMod Scalar -1 fld
2 1 elin2 V ℝVec V LMod V Scalar -1 fld
3 scaid Scalar = Slot Scalar ndx
4 3 slotfn Scalar Fn V
5 df-fn Scalar Fn V Fun Scalar dom Scalar = V
6 4 5 mpbi Fun Scalar dom Scalar = V
7 elex V LMod V V
8 eleq2 dom Scalar = V V dom Scalar V V
9 7 8 syl5ibrcom V LMod dom Scalar = V V dom Scalar
10 9 anim2d V LMod Fun Scalar dom Scalar = V Fun Scalar V dom Scalar
11 6 10 mpi V LMod Fun Scalar V dom Scalar
12 fvimacnv Fun Scalar V dom Scalar Scalar V fld V Scalar -1 fld
13 11 12 syl V LMod Scalar V fld V Scalar -1 fld
14 fvex Scalar V V
15 14 elsn Scalar V fld Scalar V = fld
16 13 15 bitr3di V LMod V Scalar -1 fld Scalar V = fld
17 16 pm5.32i V LMod V Scalar -1 fld V LMod Scalar V = fld
18 2 17 bitri V ℝVec V LMod Scalar V = fld