Metamath Proof Explorer


Theorem blen1

Description: The binary length of 1. (Contributed by AV, 21-May-2020)

Ref Expression
Assertion blen1 #b 1 = 1

Proof

Step Hyp Ref Expression
1 1nn 1
2 blennn 1#b 1 = log21+1
3 2cn 2
4 2ne0 20
5 1ne2 12
6 5 necomi 21
7 logb1 22021log21=0
8 3 4 6 7 mp3an log21=0
9 8 fveq2i log21=0
10 0z 0
11 flid 00=0
12 10 11 ax-mp 0=0
13 9 12 eqtri log21=0
14 13 a1i 1log21=0
15 14 oveq1d 1log21+1=0+1
16 0p1e1 0+1=1
17 15 16 eqtrdi 1log21+1=1
18 2 17 eqtrd 1#b 1 = 1
19 1 18 ax-mp #b 1 = 1