Metamath Proof Explorer


Theorem blin

Description: The intersection of two balls with the same center is the smaller of them. (Contributed by NM, 1-Sep-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion blin D∞MetXPXR*S*PballDRPballDS=PballDifRSRS

Proof

Step Hyp Ref Expression
1 xmetcl D∞MetXPXxXPDx*
2 1 ad4ant124 D∞MetXPXR*S*xXPDx*
3 simplrl D∞MetXPXR*S*xXR*
4 simplrr D∞MetXPXR*S*xXS*
5 xrltmin PDx*R*S*PDx<ifRSRSPDx<RPDx<S
6 2 3 4 5 syl3anc D∞MetXPXR*S*xXPDx<ifRSRSPDx<RPDx<S
7 6 pm5.32da D∞MetXPXR*S*xXPDx<ifRSRSxXPDx<RPDx<S
8 ifcl R*S*ifRSRS*
9 elbl D∞MetXPXifRSRS*xPballDifRSRSxXPDx<ifRSRS
10 9 3expa D∞MetXPXifRSRS*xPballDifRSRSxXPDx<ifRSRS
11 8 10 sylan2 D∞MetXPXR*S*xPballDifRSRSxXPDx<ifRSRS
12 elbl D∞MetXPXR*xPballDRxXPDx<R
13 12 3expa D∞MetXPXR*xPballDRxXPDx<R
14 13 adantrr D∞MetXPXR*S*xPballDRxXPDx<R
15 elbl D∞MetXPXS*xPballDSxXPDx<S
16 15 3expa D∞MetXPXS*xPballDSxXPDx<S
17 16 adantrl D∞MetXPXR*S*xPballDSxXPDx<S
18 14 17 anbi12d D∞MetXPXR*S*xPballDRxPballDSxXPDx<RxXPDx<S
19 elin xPballDRPballDSxPballDRxPballDS
20 anandi xXPDx<RPDx<SxXPDx<RxXPDx<S
21 18 19 20 3bitr4g D∞MetXPXR*S*xPballDRPballDSxXPDx<RPDx<S
22 7 11 21 3bitr4rd D∞MetXPXR*S*xPballDRPballDSxPballDifRSRS
23 22 eqrdv D∞MetXPXR*S*PballDRPballDS=PballDifRSRS