Metamath Proof Explorer


Theorem bnj563

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj563.19 ηmDn=sucmpωm=sucp
bnj563.21 ρiωsucinmsuci
Assertion bnj563 ηρsucim

Proof

Step Hyp Ref Expression
1 bnj563.19 ηmDn=sucmpωm=sucp
2 bnj563.21 ρiωsucinmsuci
3 bnj312 mDn=sucmpωm=sucpn=sucmmDpωm=sucp
4 bnj252 n=sucmmDpωm=sucpn=sucmmDpωm=sucp
5 3 4 bitri mDn=sucmpωm=sucpn=sucmmDpωm=sucp
6 5 simplbi mDn=sucmpωm=sucpn=sucm
7 1 6 sylbi ηn=sucm
8 2 simp2bi ρsucin
9 2 simp3bi ρmsuci
10 8 9 jca ρsucinmsuci
11 necom msucisucim
12 eleq2 n=sucmsucinsucisucm
13 12 biimpa n=sucmsucinsucisucm
14 elsuci sucisucmsucimsuci=m
15 orcom suci=msucimsucimsuci=m
16 neor suci=msucimsucimsucim
17 15 16 bitr3i sucimsuci=msucimsucim
18 14 17 sylib sucisucmsucimsucim
19 18 imp sucisucmsucimsucim
20 13 19 stoic3 n=sucmsucinsucimsucim
21 11 20 syl3an3b n=sucmsucinmsucisucim
22 21 3expb n=sucmsucinmsucisucim
23 7 10 22 syl2an ηρsucim