Metamath Proof Explorer


Theorem bnj852

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj852.1 φ f = pred X A R
bnj852.2 ψ i ω suc i n f suc i = y f i pred y A R
bnj852.3 D = ω
Assertion bnj852 R FrSe A X A n D ∃! f f Fn n φ ψ

Proof

Step Hyp Ref Expression
1 bnj852.1 φ f = pred X A R
2 bnj852.2 ψ i ω suc i n f suc i = y f i pred y A R
3 bnj852.3 D = ω
4 elisset X A x x = X
5 4 adantl R FrSe A X A x x = X
6 5 ancri R FrSe A X A x x = X R FrSe A X A
7 6 bnj534 R FrSe A X A x x = X R FrSe A X A
8 eleq1 x = X x A X A
9 8 anbi2d x = X R FrSe A x A R FrSe A X A
10 9 biimpar x = X R FrSe A X A R FrSe A x A
11 biid z D z E n [˙z / n]˙ R FrSe A x A ∃! f f Fn n f = pred x A R ψ z D z E n [˙z / n]˙ R FrSe A x A ∃! f f Fn n f = pred x A R ψ
12 omex ω V
13 difexg ω V ω V
14 12 13 ax-mp ω V
15 3 14 eqeltri D V
16 zfregfr E Fr D
17 11 15 16 bnj157 n D z D z E n [˙z / n]˙ R FrSe A x A ∃! f f Fn n f = pred x A R ψ R FrSe A x A ∃! f f Fn n f = pred x A R ψ n D R FrSe A x A ∃! f f Fn n f = pred x A R ψ
18 biid f = pred x A R f = pred x A R
19 biid R FrSe A x A ∃! f f Fn n f = pred x A R ψ R FrSe A x A ∃! f f Fn n f = pred x A R ψ
20 18 2 3 19 11 bnj153 n = 1 𝑜 n D z D z E n [˙z / n]˙ R FrSe A x A ∃! f f Fn n f = pred x A R ψ R FrSe A x A ∃! f f Fn n f = pred x A R ψ
21 18 2 3 19 11 bnj601 n 1 𝑜 n D z D z E n [˙z / n]˙ R FrSe A x A ∃! f f Fn n f = pred x A R ψ R FrSe A x A ∃! f f Fn n f = pred x A R ψ
22 20 21 pm2.61ine n D z D z E n [˙z / n]˙ R FrSe A x A ∃! f f Fn n f = pred x A R ψ R FrSe A x A ∃! f f Fn n f = pred x A R ψ
23 22 ex n D z D z E n [˙z / n]˙ R FrSe A x A ∃! f f Fn n f = pred x A R ψ R FrSe A x A ∃! f f Fn n f = pred x A R ψ
24 17 23 mprg n D R FrSe A x A ∃! f f Fn n f = pred x A R ψ
25 r19.21v n D R FrSe A x A ∃! f f Fn n f = pred x A R ψ R FrSe A x A n D ∃! f f Fn n f = pred x A R ψ
26 24 25 mpbi R FrSe A x A n D ∃! f f Fn n f = pred x A R ψ
27 10 26 syl x = X R FrSe A X A n D ∃! f f Fn n f = pred x A R ψ
28 bnj602 x = X pred x A R = pred X A R
29 28 eqeq2d x = X f = pred x A R f = pred X A R
30 29 1 bitr4di x = X f = pred x A R φ
31 30 3anbi2d x = X f Fn n f = pred x A R ψ f Fn n φ ψ
32 31 eubidv x = X ∃! f f Fn n f = pred x A R ψ ∃! f f Fn n φ ψ
33 32 ralbidv x = X n D ∃! f f Fn n f = pred x A R ψ n D ∃! f f Fn n φ ψ
34 33 adantr x = X R FrSe A X A n D ∃! f f Fn n f = pred x A R ψ n D ∃! f f Fn n φ ψ
35 27 34 mpbid x = X R FrSe A X A n D ∃! f f Fn n φ ψ
36 7 35 bnj593 R FrSe A X A x n D ∃! f f Fn n φ ψ
37 36 bnj937 R FrSe A X A n D ∃! f f Fn n φ ψ