Metamath Proof Explorer


Theorem br8

Description: Substitution for an eight-place predicate. (Contributed by Scott Fenton, 26-Sep-2013) (Revised by Mario Carneiro, 3-May-2015)

Ref Expression
Hypotheses br8.1 a=Aφψ
br8.2 b=Bψχ
br8.3 c=Cχθ
br8.4 d=Dθτ
br8.5 e=Eτη
br8.6 f=Fηζ
br8.7 g=Gζσ
br8.8 h=Hσρ
br8.9 x=XP=Q
br8.10 R=pq|xSaPbPcPdPePfPgPhPp=abcdq=efghφ
Assertion br8 XSAQBQCQDQEQFQGQHQABCDREFGHρ

Proof

Step Hyp Ref Expression
1 br8.1 a=Aφψ
2 br8.2 b=Bψχ
3 br8.3 c=Cχθ
4 br8.4 d=Dθτ
5 br8.5 e=Eτη
6 br8.6 f=Fηζ
7 br8.7 g=Gζσ
8 br8.8 h=Hσρ
9 br8.9 x=XP=Q
10 br8.10 R=pq|xSaPbPcPdPePfPgPhPp=abcdq=efghφ
11 opex ABCDV
12 opex EFGHV
13 eqeq1 p=ABCDp=abcdABCD=abcd
14 13 3anbi1d p=ABCDp=abcdq=efghφABCD=abcdq=efghφ
15 14 rexbidv p=ABCDhPp=abcdq=efghφhPABCD=abcdq=efghφ
16 15 2rexbidv p=ABCDfPgPhPp=abcdq=efghφfPgPhPABCD=abcdq=efghφ
17 16 2rexbidv p=ABCDdPePfPgPhPp=abcdq=efghφdPePfPgPhPABCD=abcdq=efghφ
18 17 2rexbidv p=ABCDbPcPdPePfPgPhPp=abcdq=efghφbPcPdPePfPgPhPABCD=abcdq=efghφ
19 18 2rexbidv p=ABCDxSaPbPcPdPePfPgPhPp=abcdq=efghφxSaPbPcPdPePfPgPhPABCD=abcdq=efghφ
20 eqeq1 q=EFGHq=efghEFGH=efgh
21 20 3anbi2d q=EFGHABCD=abcdq=efghφABCD=abcdEFGH=efghφ
22 21 rexbidv q=EFGHhPABCD=abcdq=efghφhPABCD=abcdEFGH=efghφ
23 22 2rexbidv q=EFGHfPgPhPABCD=abcdq=efghφfPgPhPABCD=abcdEFGH=efghφ
24 23 2rexbidv q=EFGHdPePfPgPhPABCD=abcdq=efghφdPePfPgPhPABCD=abcdEFGH=efghφ
25 24 2rexbidv q=EFGHbPcPdPePfPgPhPABCD=abcdq=efghφbPcPdPePfPgPhPABCD=abcdEFGH=efghφ
26 25 2rexbidv q=EFGHxSaPbPcPdPePfPgPhPABCD=abcdq=efghφxSaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφ
27 11 12 19 26 10 brab ABCDREFGHxSaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφ
28 opex abV
29 opex cdV
30 28 29 opth abcd=ABCDab=ABcd=CD
31 vex aV
32 vex bV
33 31 32 opth ab=ABa=Ab=B
34 1 2 sylan9bb a=Ab=Bφχ
35 33 34 sylbi ab=ABφχ
36 vex cV
37 vex dV
38 36 37 opth cd=CDc=Cd=D
39 3 4 sylan9bb c=Cd=Dχτ
40 38 39 sylbi cd=CDχτ
41 35 40 sylan9bb ab=ABcd=CDφτ
42 30 41 sylbi abcd=ABCDφτ
43 42 eqcoms ABCD=abcdφτ
44 opex efV
45 opex ghV
46 44 45 opth efgh=EFGHef=EFgh=GH
47 vex eV
48 vex fV
49 47 48 opth ef=EFe=Ef=F
50 5 6 sylan9bb e=Ef=Fτζ
51 49 50 sylbi ef=EFτζ
52 vex gV
53 vex hV
54 52 53 opth gh=GHg=Gh=H
55 7 8 sylan9bb g=Gh=Hζρ
56 54 55 sylbi gh=GHζρ
57 51 56 sylan9bb ef=EFgh=GHτρ
58 46 57 sylbi efgh=EFGHτρ
59 58 eqcoms EFGH=efghτρ
60 43 59 sylan9bb ABCD=abcdEFGH=efghφρ
61 60 biimp3a ABCD=abcdEFGH=efghφρ
62 61 a1i XSAQBQCQDQEQFQGQHQxSaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφρ
63 62 rexlimdva XSAQBQCQDQEQFQGQHQxSaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφρ
64 63 rexlimdvva XSAQBQCQDQEQFQGQHQxSaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφρ
65 64 rexlimdvva XSAQBQCQDQEQFQGQHQxSaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφρ
66 65 rexlimdvva XSAQBQCQDQEQFQGQHQxSaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφρ
67 66 rexlimdvva XSAQBQCQDQEQFQGQHQxSaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφρ
68 simpl11 XSAQBQCQDQEQFQGQHQρXS
69 simpl12 XSAQBQCQDQEQFQGQHQρAQ
70 simpl13 XSAQBQCQDQEQFQGQHQρBQ
71 simpl21 XSAQBQCQDQEQFQGQHQρCQ
72 simpl22 XSAQBQCQDQEQFQGQHQρDQ
73 simpl23 XSAQBQCQDQEQFQGQHQρEQ
74 simpl31 XSAQBQCQDQEQFQGQHQρFQ
75 simpl32 XSAQBQCQDQEQFQGQHQρGQ
76 simpl33 XSAQBQCQDQEQFQGQHQρHQ
77 eqidd XSAQBQCQDQEQFQGQHQρABCD=ABCD
78 eqidd XSAQBQCQDQEQFQGQHQρEFGH=EFGH
79 simpr XSAQBQCQDQEQFQGQHQρρ
80 opeq1 g=Ggh=Gh
81 80 opeq2d g=GEFgh=EFGh
82 81 eqeq2d g=GEFGH=EFghEFGH=EFGh
83 82 7 3anbi23d g=GABCD=ABCDEFGH=EFghζABCD=ABCDEFGH=EFGhσ
84 opeq2 h=HGh=GH
85 84 opeq2d h=HEFGh=EFGH
86 85 eqeq2d h=HEFGH=EFGhEFGH=EFGH
87 86 8 3anbi23d h=HABCD=ABCDEFGH=EFGhσABCD=ABCDEFGH=EFGHρ
88 83 87 rspc2ev GQHQABCD=ABCDEFGH=EFGHρgQhQABCD=ABCDEFGH=EFghζ
89 75 76 77 78 79 88 syl113anc XSAQBQCQDQEQFQGQHQρgQhQABCD=ABCDEFGH=EFghζ
90 opeq2 d=DCd=CD
91 90 opeq2d d=DABCd=ABCD
92 91 eqeq2d d=DABCD=ABCdABCD=ABCD
93 92 4 3anbi13d d=DABCD=ABCdEFGH=efghθABCD=ABCDEFGH=efghτ
94 93 2rexbidv d=DgQhQABCD=ABCdEFGH=efghθgQhQABCD=ABCDEFGH=efghτ
95 opeq1 e=Eef=Ef
96 95 opeq1d e=Eefgh=Efgh
97 96 eqeq2d e=EEFGH=efghEFGH=Efgh
98 97 5 3anbi23d e=EABCD=ABCDEFGH=efghτABCD=ABCDEFGH=Efghη
99 98 2rexbidv e=EgQhQABCD=ABCDEFGH=efghτgQhQABCD=ABCDEFGH=Efghη
100 opeq2 f=FEf=EF
101 100 opeq1d f=FEfgh=EFgh
102 101 eqeq2d f=FEFGH=EfghEFGH=EFgh
103 102 6 3anbi23d f=FABCD=ABCDEFGH=EfghηABCD=ABCDEFGH=EFghζ
104 103 2rexbidv f=FgQhQABCD=ABCDEFGH=EfghηgQhQABCD=ABCDEFGH=EFghζ
105 94 99 104 rspc3ev DQEQFQgQhQABCD=ABCDEFGH=EFghζdQeQfQgQhQABCD=ABCdEFGH=efghθ
106 72 73 74 89 105 syl31anc XSAQBQCQDQEQFQGQHQρdQeQfQgQhQABCD=ABCdEFGH=efghθ
107 opeq1 a=Aab=Ab
108 107 opeq1d a=Aabcd=Abcd
109 108 eqeq2d a=AABCD=abcdABCD=Abcd
110 109 1 3anbi13d a=AABCD=abcdEFGH=efghφABCD=AbcdEFGH=efghψ
111 110 rexbidv a=AhQABCD=abcdEFGH=efghφhQABCD=AbcdEFGH=efghψ
112 111 2rexbidv a=AfQgQhQABCD=abcdEFGH=efghφfQgQhQABCD=AbcdEFGH=efghψ
113 112 2rexbidv a=AdQeQfQgQhQABCD=abcdEFGH=efghφdQeQfQgQhQABCD=AbcdEFGH=efghψ
114 opeq2 b=BAb=AB
115 114 opeq1d b=BAbcd=ABcd
116 115 eqeq2d b=BABCD=AbcdABCD=ABcd
117 116 2 3anbi13d b=BABCD=AbcdEFGH=efghψABCD=ABcdEFGH=efghχ
118 117 rexbidv b=BhQABCD=AbcdEFGH=efghψhQABCD=ABcdEFGH=efghχ
119 118 2rexbidv b=BfQgQhQABCD=AbcdEFGH=efghψfQgQhQABCD=ABcdEFGH=efghχ
120 119 2rexbidv b=BdQeQfQgQhQABCD=AbcdEFGH=efghψdQeQfQgQhQABCD=ABcdEFGH=efghχ
121 opeq1 c=Ccd=Cd
122 121 opeq2d c=CABcd=ABCd
123 122 eqeq2d c=CABCD=ABcdABCD=ABCd
124 123 3 3anbi13d c=CABCD=ABcdEFGH=efghχABCD=ABCdEFGH=efghθ
125 124 rexbidv c=ChQABCD=ABcdEFGH=efghχhQABCD=ABCdEFGH=efghθ
126 125 2rexbidv c=CfQgQhQABCD=ABcdEFGH=efghχfQgQhQABCD=ABCdEFGH=efghθ
127 126 2rexbidv c=CdQeQfQgQhQABCD=ABcdEFGH=efghχdQeQfQgQhQABCD=ABCdEFGH=efghθ
128 113 120 127 rspc3ev AQBQCQdQeQfQgQhQABCD=ABCdEFGH=efghθaQbQcQdQeQfQgQhQABCD=abcdEFGH=efghφ
129 69 70 71 106 128 syl31anc XSAQBQCQDQEQFQGQHQρaQbQcQdQeQfQgQhQABCD=abcdEFGH=efghφ
130 9 rexeqdv x=XhPABCD=abcdEFGH=efghφhQABCD=abcdEFGH=efghφ
131 9 130 rexeqbidv x=XgPhPABCD=abcdEFGH=efghφgQhQABCD=abcdEFGH=efghφ
132 9 131 rexeqbidv x=XfPgPhPABCD=abcdEFGH=efghφfQgQhQABCD=abcdEFGH=efghφ
133 9 132 rexeqbidv x=XePfPgPhPABCD=abcdEFGH=efghφeQfQgQhQABCD=abcdEFGH=efghφ
134 9 133 rexeqbidv x=XdPePfPgPhPABCD=abcdEFGH=efghφdQeQfQgQhQABCD=abcdEFGH=efghφ
135 9 134 rexeqbidv x=XcPdPePfPgPhPABCD=abcdEFGH=efghφcQdQeQfQgQhQABCD=abcdEFGH=efghφ
136 9 135 rexeqbidv x=XbPcPdPePfPgPhPABCD=abcdEFGH=efghφbQcQdQeQfQgQhQABCD=abcdEFGH=efghφ
137 9 136 rexeqbidv x=XaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφaQbQcQdQeQfQgQhQABCD=abcdEFGH=efghφ
138 137 rspcev XSaQbQcQdQeQfQgQhQABCD=abcdEFGH=efghφxSaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφ
139 68 129 138 syl2anc XSAQBQCQDQEQFQGQHQρxSaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφ
140 139 ex XSAQBQCQDQEQFQGQHQρxSaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφ
141 67 140 impbid XSAQBQCQDQEQFQGQHQxSaPbPcPdPePfPgPhPABCD=abcdEFGH=efghφρ
142 27 141 bitrid XSAQBQCQDQEQFQGQHQABCDREFGHρ