Metamath Proof Explorer


Theorem brab2a

Description: The law of concretion for a binary relation. Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypotheses brab2a.1 x=Ay=Bφψ
brab2a.2 R=xy|xCyDφ
Assertion brab2a ARBACBDψ

Proof

Step Hyp Ref Expression
1 brab2a.1 x=Ay=Bφψ
2 brab2a.2 R=xy|xCyDφ
3 opabssxp xy|xCyDφC×D
4 2 3 eqsstri RC×D
5 4 brel ARBACBD
6 df-br ARBABR
7 2 eleq2i ABRABxy|xCyDφ
8 6 7 bitri ARBABxy|xCyDφ
9 1 opelopab2a ACBDABxy|xCyDφψ
10 8 9 bitrid ACBDARBψ
11 5 10 biadanii ARBACBDψ