Metamath Proof Explorer


Theorem brab2a

Description: The law of concretion for a binary relation. Ordered pair membership in an ordered pair class abstraction. (Contributed by Mario Carneiro, 28-Apr-2015)

Ref Expression
Hypotheses brab2a.1 x = A y = B φ ψ
brab2a.2 R = x y | x C y D φ
Assertion brab2a A R B A C B D ψ

Proof

Step Hyp Ref Expression
1 brab2a.1 x = A y = B φ ψ
2 brab2a.2 R = x y | x C y D φ
3 opabssxp x y | x C y D φ C × D
4 2 3 eqsstri R C × D
5 4 brel A R B A C B D
6 df-br A R B A B R
7 2 eleq2i A B R A B x y | x C y D φ
8 6 7 bitri A R B A B x y | x C y D φ
9 1 opelopab2a A C B D A B x y | x C y D φ ψ
10 8 9 bitrid A C B D A R B ψ
11 5 10 biadanii A R B A C B D ψ