Metamath Proof Explorer


Theorem brafnmul

Description: Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006) (Revised by Mario Carneiro, 16-Nov-2013) (New usage is discouraged.)

Ref Expression
Assertion brafnmul ABbraAB=A·fnbraB

Proof

Step Hyp Ref Expression
1 hvmulcl ABAB
2 brafval ABbraAB=xxihAB
3 1 2 syl ABbraAB=xxihAB
4 cjcl AA
5 brafn BbraB:
6 hfmmval AbraB:A·fnbraB=xAbraBx
7 4 5 6 syl2an ABA·fnbraB=xAbraBx
8 his5 AxBxihAB=AxihB
9 8 3expa AxBxihAB=AxihB
10 9 an32s ABxxihAB=AxihB
11 braval BxbraBx=xihB
12 11 adantll ABxbraBx=xihB
13 12 oveq2d ABxAbraBx=AxihB
14 10 13 eqtr4d ABxxihAB=AbraBx
15 14 mpteq2dva ABxxihAB=xAbraBx
16 7 15 eqtr4d ABA·fnbraB=xxihAB
17 3 16 eqtr4d ABbraAB=A·fnbraB