Metamath Proof Explorer


Theorem brcap

Description: Binary relation form of the Cap function. (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Hypotheses brcap.1 AV
brcap.2 BV
brcap.3 CV
Assertion brcap AB𝖢𝖺𝗉CC=AB

Proof

Step Hyp Ref Expression
1 brcap.1 AV
2 brcap.2 BV
3 brcap.3 CV
4 opex ABV
5 df-cap 𝖢𝖺𝗉=V×V×VranVE1st-1E2nd-1EV
6 1 2 opelvv ABV×V
7 brxp ABV×V×VCABV×VCV
8 6 3 7 mpbir2an ABV×V×VC
9 epel xEyxy
10 vex yV
11 10 4 brcnv y1st-1ABAB1sty
12 1 2 br1steq AB1styy=A
13 11 12 bitri y1st-1ABy=A
14 9 13 anbi12ci xEyy1st-1ABy=Axy
15 14 exbii yxEyy1st-1AByy=Axy
16 vex xV
17 16 4 brco x1st-1EAByxEyy1st-1AB
18 1 clel3 xAyy=Axy
19 15 17 18 3bitr4i x1st-1EABxA
20 10 4 brcnv y2nd-1ABAB2ndy
21 1 2 br2ndeq AB2ndyy=B
22 20 21 bitri y2nd-1ABy=B
23 9 22 anbi12ci xEyy2nd-1ABy=Bxy
24 23 exbii yxEyy2nd-1AByy=Bxy
25 16 4 brco x2nd-1EAByxEyy2nd-1AB
26 2 clel3 xByy=Bxy
27 24 25 26 3bitr4i x2nd-1EABxB
28 19 27 anbi12i x1st-1EABx2nd-1EABxAxB
29 brin x1st-1E2nd-1EABx1st-1EABx2nd-1EAB
30 elin xABxAxB
31 28 29 30 3bitr4ri xABx1st-1E2nd-1EAB
32 4 3 5 8 31 brtxpsd3 AB𝖢𝖺𝗉CC=AB