Metamath Proof Explorer


Theorem brcic

Description: The relation "is isomorphic to" for categories. (Contributed by AV, 5-Apr-2020)

Ref Expression
Hypotheses cic.i I=IsoC
cic.b B=BaseC
cic.c φCCat
cic.x φXB
cic.y φYB
Assertion brcic φX𝑐CYXIY

Proof

Step Hyp Ref Expression
1 cic.i I=IsoC
2 cic.b B=BaseC
3 cic.c φCCat
4 cic.x φXB
5 cic.y φYB
6 cicfval CCat𝑐C=IsoCsupp
7 3 6 syl φ𝑐C=IsoCsupp
8 7 breqd φX𝑐CYXsuppIsoCY
9 df-br XsuppIsoCYXYsuppIsoC
10 9 a1i φXsuppIsoCYXYsuppIsoC
11 1 a1i φI=IsoC
12 11 fveq1d φIXY=IsoCXY
13 12 neeq1d φIXYIsoCXY
14 df-ov XIY=IXY
15 14 eqcomi IXY=XIY
16 15 a1i φIXY=XIY
17 16 neeq1d φIXYXIY
18 fvexd φBaseCV
19 18 18 xpexd φBaseC×BaseCV
20 4 2 eleqtrdi φXBaseC
21 5 2 eleqtrdi φYBaseC
22 20 21 opelxpd φXYBaseC×BaseC
23 isofn CCatIsoCFnBaseC×BaseC
24 3 23 syl φIsoCFnBaseC×BaseC
25 fvn0elsuppb BaseC×BaseCVXYBaseC×BaseCIsoCFnBaseC×BaseCIsoCXYXYsuppIsoC
26 19 22 24 25 syl3anc φIsoCXYXYsuppIsoC
27 13 17 26 3bitr3rd φXYsuppIsoCXIY
28 8 10 27 3bitrd φX𝑐CYXIY