Description: The relation "is isomorphic to" for categories. (Contributed by AV, 5-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cic.i | |
|
cic.b | |
||
cic.c | |
||
cic.x | |
||
cic.y | |
||
Assertion | brcic | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cic.i | |
|
2 | cic.b | |
|
3 | cic.c | |
|
4 | cic.x | |
|
5 | cic.y | |
|
6 | cicfval | |
|
7 | 3 6 | syl | |
8 | 7 | breqd | |
9 | df-br | |
|
10 | 9 | a1i | |
11 | 1 | a1i | |
12 | 11 | fveq1d | |
13 | 12 | neeq1d | |
14 | df-ov | |
|
15 | 14 | eqcomi | |
16 | 15 | a1i | |
17 | 16 | neeq1d | |
18 | fvexd | |
|
19 | 18 18 | xpexd | |
20 | 4 2 | eleqtrdi | |
21 | 5 2 | eleqtrdi | |
22 | 20 21 | opelxpd | |
23 | isofn | |
|
24 | 3 23 | syl | |
25 | fvn0elsuppb | |
|
26 | 19 22 24 25 | syl3anc | |
27 | 13 17 26 | 3bitr3rd | |
28 | 8 10 27 | 3bitrd | |