Metamath Proof Explorer


Theorem brdifun

Description: Evaluate the incomparability relation. (Contributed by Mario Carneiro, 9-Jul-2014)

Ref Expression
Hypothesis swoer.1 R=X×X<˙<˙-1
Assertion brdifun AXBXARB¬A<˙BB<˙A

Proof

Step Hyp Ref Expression
1 swoer.1 R=X×X<˙<˙-1
2 opelxpi AXBXABX×X
3 df-br AX×XBABX×X
4 2 3 sylibr AXBXAX×XB
5 1 breqi ARBAX×X<˙<˙-1B
6 brdif AX×X<˙<˙-1BAX×XB¬A<˙<˙-1B
7 5 6 bitri ARBAX×XB¬A<˙<˙-1B
8 7 baib AX×XBARB¬A<˙<˙-1B
9 4 8 syl AXBXARB¬A<˙<˙-1B
10 brun A<˙<˙-1BA<˙BA<˙-1B
11 brcnvg AXBXA<˙-1BB<˙A
12 11 orbi2d AXBXA<˙BA<˙-1BA<˙BB<˙A
13 10 12 bitrid AXBXA<˙<˙-1BA<˙BB<˙A
14 13 notbid AXBX¬A<˙<˙-1B¬A<˙BB<˙A
15 9 14 bitrd AXBXARB¬A<˙BB<˙A