Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Equivalence relations and classes
brdifun
Next ⟩
swoer
Metamath Proof Explorer
Ascii
Unicode
Theorem
brdifun
Description:
Evaluate the incomparability relation.
(Contributed by
Mario Carneiro
, 9-Jul-2014)
Ref
Expression
Hypothesis
swoer.1
⊢
R
=
X
×
X
∖
<
˙
∪
<
˙
-1
Assertion
brdifun
⊢
A
∈
X
∧
B
∈
X
→
A
R
B
↔
¬
A
<
˙
B
∨
B
<
˙
A
Proof
Step
Hyp
Ref
Expression
1
swoer.1
⊢
R
=
X
×
X
∖
<
˙
∪
<
˙
-1
2
opelxpi
⊢
A
∈
X
∧
B
∈
X
→
A
B
∈
X
×
X
3
df-br
⊢
A
X
×
X
B
↔
A
B
∈
X
×
X
4
2
3
sylibr
⊢
A
∈
X
∧
B
∈
X
→
A
X
×
X
B
5
1
breqi
⊢
A
R
B
↔
A
X
×
X
∖
<
˙
∪
<
˙
-1
B
6
brdif
⊢
A
X
×
X
∖
<
˙
∪
<
˙
-1
B
↔
A
X
×
X
B
∧
¬
A
<
˙
∪
<
˙
-1
B
7
5
6
bitri
⊢
A
R
B
↔
A
X
×
X
B
∧
¬
A
<
˙
∪
<
˙
-1
B
8
7
baib
⊢
A
X
×
X
B
→
A
R
B
↔
¬
A
<
˙
∪
<
˙
-1
B
9
4
8
syl
⊢
A
∈
X
∧
B
∈
X
→
A
R
B
↔
¬
A
<
˙
∪
<
˙
-1
B
10
brun
⊢
A
<
˙
∪
<
˙
-1
B
↔
A
<
˙
B
∨
A
<
˙
-1
B
11
brcnvg
⊢
A
∈
X
∧
B
∈
X
→
A
<
˙
-1
B
↔
B
<
˙
A
12
11
orbi2d
⊢
A
∈
X
∧
B
∈
X
→
A
<
˙
B
∨
A
<
˙
-1
B
↔
A
<
˙
B
∨
B
<
˙
A
13
10
12
bitrid
⊢
A
∈
X
∧
B
∈
X
→
A
<
˙
∪
<
˙
-1
B
↔
A
<
˙
B
∨
B
<
˙
A
14
13
notbid
⊢
A
∈
X
∧
B
∈
X
→
¬
A
<
˙
∪
<
˙
-1
B
↔
¬
A
<
˙
B
∨
B
<
˙
A
15
9
14
bitrd
⊢
A
∈
X
∧
B
∈
X
→
A
R
B
↔
¬
A
<
˙
B
∨
B
<
˙
A