Metamath Proof Explorer


Theorem cantnffval

Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015) (Revised by AV, 28-Jun-2019)

Ref Expression
Hypotheses cantnffval.s S=gAB|finSuppg
cantnffval.a φAOn
cantnffval.b φBOn
Assertion cantnffval φACNFB=fSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh

Proof

Step Hyp Ref Expression
1 cantnffval.s S=gAB|finSuppg
2 cantnffval.a φAOn
3 cantnffval.b φBOn
4 oveq12 x=Ay=Bxy=AB
5 4 rabeqdv x=Ay=Bgxy|finSuppg=gAB|finSuppg
6 5 1 eqtr4di x=Ay=Bgxy|finSuppg=S
7 simp1l x=Ay=BkVzVx=A
8 7 oveq1d x=Ay=BkVzVx𝑜hk=A𝑜hk
9 8 oveq1d x=Ay=BkVzVx𝑜hk𝑜fhk=A𝑜hk𝑜fhk
10 9 oveq1d x=Ay=BkVzVx𝑜hk𝑜fhk+𝑜z=A𝑜hk𝑜fhk+𝑜z
11 10 mpoeq3dva x=Ay=BkV,zVx𝑜hk𝑜fhk+𝑜z=kV,zVA𝑜hk𝑜fhk+𝑜z
12 eqid =
13 seqomeq12 kV,zVx𝑜hk𝑜fhk+𝑜z=kV,zVA𝑜hk𝑜fhk+𝑜z=seqωkV,zVx𝑜hk𝑜fhk+𝑜z=seqωkV,zVA𝑜hk𝑜fhk+𝑜z
14 11 12 13 sylancl x=Ay=BseqωkV,zVx𝑜hk𝑜fhk+𝑜z=seqωkV,zVA𝑜hk𝑜fhk+𝑜z
15 14 fveq1d x=Ay=BseqωkV,zVx𝑜hk𝑜fhk+𝑜zdomh=seqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh
16 15 csbeq2dv x=Ay=BOrdIsoEfsupp/hseqωkV,zVx𝑜hk𝑜fhk+𝑜zdomh=OrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh
17 6 16 mpteq12dv x=Ay=Bfgxy|finSuppgOrdIsoEfsupp/hseqωkV,zVx𝑜hk𝑜fhk+𝑜zdomh=fSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh
18 df-cnf CNF=xOn,yOnfgxy|finSuppgOrdIsoEfsupp/hseqωkV,zVx𝑜hk𝑜fhk+𝑜zdomh
19 ovex ABV
20 1 19 rabex2 SV
21 20 mptex fSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomhV
22 17 18 21 ovmpoa AOnBOnACNFB=fSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh
23 2 3 22 syl2anc φACNFB=fSOrdIsoEfsupp/hseqωkV,zVA𝑜hk𝑜fhk+𝑜zdomh