Metamath Proof Explorer


Theorem caovordig

Description: Convert an operation ordering law to class notation. (Contributed by Mario Carneiro, 31-Dec-2014)

Ref Expression
Hypothesis caovordig.1 φxSySzSxRyzFxRzFy
Assertion caovordig φASBSCSARBCFARCFB

Proof

Step Hyp Ref Expression
1 caovordig.1 φxSySzSxRyzFxRzFy
2 1 ralrimivvva φxSySzSxRyzFxRzFy
3 breq1 x=AxRyARy
4 oveq2 x=AzFx=zFA
5 4 breq1d x=AzFxRzFyzFARzFy
6 3 5 imbi12d x=AxRyzFxRzFyARyzFARzFy
7 breq2 y=BARyARB
8 oveq2 y=BzFy=zFB
9 8 breq2d y=BzFARzFyzFARzFB
10 7 9 imbi12d y=BARyzFARzFyARBzFARzFB
11 oveq1 z=CzFA=CFA
12 oveq1 z=CzFB=CFB
13 11 12 breq12d z=CzFARzFBCFARCFB
14 13 imbi2d z=CARBzFARzFBARBCFARCFB
15 6 10 14 rspc3v ASBSCSxSySzSxRyzFxRzFyARBCFARCFB
16 2 15 mpan9 φASBSCSARBCFARCFB