Metamath Proof Explorer


Theorem card2inf

Description: The alternate definition of the cardinal of a set given in cardval2 has the curious property that for non-numerable sets (for which ndmfv yields (/) ), it still evaluates to a nonempty set, and indeed it contains _om . (Contributed by Mario Carneiro, 15-Jan-2013) (Revised by Mario Carneiro, 27-Apr-2015)

Ref Expression
Hypothesis card2inf.1 AV
Assertion card2inf ¬yOnyAωxOn|xA

Proof

Step Hyp Ref Expression
1 card2inf.1 AV
2 breq1 x=xAA
3 breq1 x=nxAnA
4 breq1 x=sucnxAsucnA
5 0elon On
6 breq1 y=yAA
7 6 rspcev OnAyOnyA
8 5 7 mpan AyOnyA
9 8 con3i ¬yOnyA¬A
10 1 0dom A
11 brsdom AA¬A
12 10 11 mpbiran A¬A
13 9 12 sylibr ¬yOnyAA
14 sucdom2 nAsucnA
15 14 ad2antll nω¬yOnyAnAsucnA
16 nnon nωnOn
17 onsuc nOnsucnOn
18 breq1 y=sucnyAsucnA
19 18 rspcev sucnOnsucnAyOnyA
20 19 ex sucnOnsucnAyOnyA
21 16 17 20 3syl nωsucnAyOnyA
22 21 con3dimp nω¬yOnyA¬sucnA
23 22 adantrr nω¬yOnyAnA¬sucnA
24 brsdom sucnAsucnA¬sucnA
25 15 23 24 sylanbrc nω¬yOnyAnAsucnA
26 25 exp32 nω¬yOnyAnAsucnA
27 2 3 4 13 26 finds2 xω¬yOnyAxA
28 27 com12 ¬yOnyAxωxA
29 28 ralrimiv ¬yOnyAxωxA
30 omsson ωOn
31 ssrab ωxOn|xAωOnxωxA
32 30 31 mpbiran ωxOn|xAxωxA
33 29 32 sylibr ¬yOnyAωxOn|xA