| Step | Hyp | Ref | Expression | 
						
							| 1 |  | card2inf.1 |  |-  A e. _V | 
						
							| 2 |  | breq1 |  |-  ( x = (/) -> ( x ~< A <-> (/) ~< A ) ) | 
						
							| 3 |  | breq1 |  |-  ( x = n -> ( x ~< A <-> n ~< A ) ) | 
						
							| 4 |  | breq1 |  |-  ( x = suc n -> ( x ~< A <-> suc n ~< A ) ) | 
						
							| 5 |  | 0elon |  |-  (/) e. On | 
						
							| 6 |  | breq1 |  |-  ( y = (/) -> ( y ~~ A <-> (/) ~~ A ) ) | 
						
							| 7 | 6 | rspcev |  |-  ( ( (/) e. On /\ (/) ~~ A ) -> E. y e. On y ~~ A ) | 
						
							| 8 | 5 7 | mpan |  |-  ( (/) ~~ A -> E. y e. On y ~~ A ) | 
						
							| 9 | 8 | con3i |  |-  ( -. E. y e. On y ~~ A -> -. (/) ~~ A ) | 
						
							| 10 | 1 | 0dom |  |-  (/) ~<_ A | 
						
							| 11 |  | brsdom |  |-  ( (/) ~< A <-> ( (/) ~<_ A /\ -. (/) ~~ A ) ) | 
						
							| 12 | 10 11 | mpbiran |  |-  ( (/) ~< A <-> -. (/) ~~ A ) | 
						
							| 13 | 9 12 | sylibr |  |-  ( -. E. y e. On y ~~ A -> (/) ~< A ) | 
						
							| 14 |  | sucdom2 |  |-  ( n ~< A -> suc n ~<_ A ) | 
						
							| 15 | 14 | ad2antll |  |-  ( ( n e. _om /\ ( -. E. y e. On y ~~ A /\ n ~< A ) ) -> suc n ~<_ A ) | 
						
							| 16 |  | nnon |  |-  ( n e. _om -> n e. On ) | 
						
							| 17 |  | onsuc |  |-  ( n e. On -> suc n e. On ) | 
						
							| 18 |  | breq1 |  |-  ( y = suc n -> ( y ~~ A <-> suc n ~~ A ) ) | 
						
							| 19 | 18 | rspcev |  |-  ( ( suc n e. On /\ suc n ~~ A ) -> E. y e. On y ~~ A ) | 
						
							| 20 | 19 | ex |  |-  ( suc n e. On -> ( suc n ~~ A -> E. y e. On y ~~ A ) ) | 
						
							| 21 | 16 17 20 | 3syl |  |-  ( n e. _om -> ( suc n ~~ A -> E. y e. On y ~~ A ) ) | 
						
							| 22 | 21 | con3dimp |  |-  ( ( n e. _om /\ -. E. y e. On y ~~ A ) -> -. suc n ~~ A ) | 
						
							| 23 | 22 | adantrr |  |-  ( ( n e. _om /\ ( -. E. y e. On y ~~ A /\ n ~< A ) ) -> -. suc n ~~ A ) | 
						
							| 24 |  | brsdom |  |-  ( suc n ~< A <-> ( suc n ~<_ A /\ -. suc n ~~ A ) ) | 
						
							| 25 | 15 23 24 | sylanbrc |  |-  ( ( n e. _om /\ ( -. E. y e. On y ~~ A /\ n ~< A ) ) -> suc n ~< A ) | 
						
							| 26 | 25 | exp32 |  |-  ( n e. _om -> ( -. E. y e. On y ~~ A -> ( n ~< A -> suc n ~< A ) ) ) | 
						
							| 27 | 2 3 4 13 26 | finds2 |  |-  ( x e. _om -> ( -. E. y e. On y ~~ A -> x ~< A ) ) | 
						
							| 28 | 27 | com12 |  |-  ( -. E. y e. On y ~~ A -> ( x e. _om -> x ~< A ) ) | 
						
							| 29 | 28 | ralrimiv |  |-  ( -. E. y e. On y ~~ A -> A. x e. _om x ~< A ) | 
						
							| 30 |  | omsson |  |-  _om C_ On | 
						
							| 31 |  | ssrab |  |-  ( _om C_ { x e. On | x ~< A } <-> ( _om C_ On /\ A. x e. _om x ~< A ) ) | 
						
							| 32 | 30 31 | mpbiran |  |-  ( _om C_ { x e. On | x ~< A } <-> A. x e. _om x ~< A ) | 
						
							| 33 | 29 32 | sylibr |  |-  ( -. E. y e. On y ~~ A -> _om C_ { x e. On | x ~< A } ) |