| Step | Hyp | Ref | Expression | 
						
							| 1 |  | card2inf.1 | ⊢ 𝐴  ∈  V | 
						
							| 2 |  | breq1 | ⊢ ( 𝑥  =  ∅  →  ( 𝑥  ≺  𝐴  ↔  ∅  ≺  𝐴 ) ) | 
						
							| 3 |  | breq1 | ⊢ ( 𝑥  =  𝑛  →  ( 𝑥  ≺  𝐴  ↔  𝑛  ≺  𝐴 ) ) | 
						
							| 4 |  | breq1 | ⊢ ( 𝑥  =  suc  𝑛  →  ( 𝑥  ≺  𝐴  ↔  suc  𝑛  ≺  𝐴 ) ) | 
						
							| 5 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 6 |  | breq1 | ⊢ ( 𝑦  =  ∅  →  ( 𝑦  ≈  𝐴  ↔  ∅  ≈  𝐴 ) ) | 
						
							| 7 | 6 | rspcev | ⊢ ( ( ∅  ∈  On  ∧  ∅  ≈  𝐴 )  →  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴 ) | 
						
							| 8 | 5 7 | mpan | ⊢ ( ∅  ≈  𝐴  →  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴 ) | 
						
							| 9 | 8 | con3i | ⊢ ( ¬  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴  →  ¬  ∅  ≈  𝐴 ) | 
						
							| 10 | 1 | 0dom | ⊢ ∅  ≼  𝐴 | 
						
							| 11 |  | brsdom | ⊢ ( ∅  ≺  𝐴  ↔  ( ∅  ≼  𝐴  ∧  ¬  ∅  ≈  𝐴 ) ) | 
						
							| 12 | 10 11 | mpbiran | ⊢ ( ∅  ≺  𝐴  ↔  ¬  ∅  ≈  𝐴 ) | 
						
							| 13 | 9 12 | sylibr | ⊢ ( ¬  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴  →  ∅  ≺  𝐴 ) | 
						
							| 14 |  | sucdom2 | ⊢ ( 𝑛  ≺  𝐴  →  suc  𝑛  ≼  𝐴 ) | 
						
							| 15 | 14 | ad2antll | ⊢ ( ( 𝑛  ∈  ω  ∧  ( ¬  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴  ∧  𝑛  ≺  𝐴 ) )  →  suc  𝑛  ≼  𝐴 ) | 
						
							| 16 |  | nnon | ⊢ ( 𝑛  ∈  ω  →  𝑛  ∈  On ) | 
						
							| 17 |  | onsuc | ⊢ ( 𝑛  ∈  On  →  suc  𝑛  ∈  On ) | 
						
							| 18 |  | breq1 | ⊢ ( 𝑦  =  suc  𝑛  →  ( 𝑦  ≈  𝐴  ↔  suc  𝑛  ≈  𝐴 ) ) | 
						
							| 19 | 18 | rspcev | ⊢ ( ( suc  𝑛  ∈  On  ∧  suc  𝑛  ≈  𝐴 )  →  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴 ) | 
						
							| 20 | 19 | ex | ⊢ ( suc  𝑛  ∈  On  →  ( suc  𝑛  ≈  𝐴  →  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴 ) ) | 
						
							| 21 | 16 17 20 | 3syl | ⊢ ( 𝑛  ∈  ω  →  ( suc  𝑛  ≈  𝐴  →  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴 ) ) | 
						
							| 22 | 21 | con3dimp | ⊢ ( ( 𝑛  ∈  ω  ∧  ¬  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴 )  →  ¬  suc  𝑛  ≈  𝐴 ) | 
						
							| 23 | 22 | adantrr | ⊢ ( ( 𝑛  ∈  ω  ∧  ( ¬  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴  ∧  𝑛  ≺  𝐴 ) )  →  ¬  suc  𝑛  ≈  𝐴 ) | 
						
							| 24 |  | brsdom | ⊢ ( suc  𝑛  ≺  𝐴  ↔  ( suc  𝑛  ≼  𝐴  ∧  ¬  suc  𝑛  ≈  𝐴 ) ) | 
						
							| 25 | 15 23 24 | sylanbrc | ⊢ ( ( 𝑛  ∈  ω  ∧  ( ¬  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴  ∧  𝑛  ≺  𝐴 ) )  →  suc  𝑛  ≺  𝐴 ) | 
						
							| 26 | 25 | exp32 | ⊢ ( 𝑛  ∈  ω  →  ( ¬  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴  →  ( 𝑛  ≺  𝐴  →  suc  𝑛  ≺  𝐴 ) ) ) | 
						
							| 27 | 2 3 4 13 26 | finds2 | ⊢ ( 𝑥  ∈  ω  →  ( ¬  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴  →  𝑥  ≺  𝐴 ) ) | 
						
							| 28 | 27 | com12 | ⊢ ( ¬  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴  →  ( 𝑥  ∈  ω  →  𝑥  ≺  𝐴 ) ) | 
						
							| 29 | 28 | ralrimiv | ⊢ ( ¬  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴  →  ∀ 𝑥  ∈  ω 𝑥  ≺  𝐴 ) | 
						
							| 30 |  | omsson | ⊢ ω  ⊆  On | 
						
							| 31 |  | ssrab | ⊢ ( ω  ⊆  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ↔  ( ω  ⊆  On  ∧  ∀ 𝑥  ∈  ω 𝑥  ≺  𝐴 ) ) | 
						
							| 32 | 30 31 | mpbiran | ⊢ ( ω  ⊆  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 }  ↔  ∀ 𝑥  ∈  ω 𝑥  ≺  𝐴 ) | 
						
							| 33 | 29 32 | sylibr | ⊢ ( ¬  ∃ 𝑦  ∈  On 𝑦  ≈  𝐴  →  ω  ⊆  { 𝑥  ∈  On  ∣  𝑥  ≺  𝐴 } ) |