Metamath Proof Explorer


Theorem cardid2

Description: Any numerable set is equinumerous to its cardinal number. Proposition 10.5 of TakeutiZaring p. 85. (Contributed by Mario Carneiro, 7-Jan-2013)

Ref Expression
Assertion cardid2 AdomcardcardAA

Proof

Step Hyp Ref Expression
1 cardval3 AdomcardcardA=yOn|yA
2 ssrab2 yOn|yAOn
3 fvex cardAV
4 1 3 eqeltrrdi AdomcardyOn|yAV
5 intex yOn|yAyOn|yAV
6 4 5 sylibr AdomcardyOn|yA
7 onint yOn|yAOnyOn|yAyOn|yAyOn|yA
8 2 6 7 sylancr AdomcardyOn|yAyOn|yA
9 1 8 eqeltrd AdomcardcardAyOn|yA
10 breq1 y=cardAyAcardAA
11 10 elrab cardAyOn|yAcardAOncardAA
12 11 simprbi cardAyOn|yAcardAA
13 9 12 syl AdomcardcardAA