Metamath Proof Explorer


Theorem cardinfima

Description: If a mapping to cardinals has an infinite value, then the union of its image is an infinite cardinal. Corollary 11.17 of TakeutiZaring p. 104. (Contributed by NM, 4-Nov-2004)

Ref Expression
Assertion cardinfima ABF:AωranxAFxranFAran

Proof

Step Hyp Ref Expression
1 elex ABAV
2 isinfcard ωFxcardFx=FxFxran
3 2 bicomi FxranωFxcardFx=Fx
4 3 simplbi FxranωFx
5 ffn F:AωranFFnA
6 fnfvelrn FFnAxAFxranF
7 6 ex FFnAxAFxranF
8 fnima FFnAFA=ranF
9 8 eleq2d FFnAFxFAFxranF
10 7 9 sylibrd FFnAxAFxFA
11 elssuni FxFAFxFA
12 10 11 syl6 FFnAxAFxFA
13 12 imp FFnAxAFxFA
14 5 13 sylan F:AωranxAFxFA
15 4 14 sylan9ssr F:AωranxAFxranωFA
16 15 anasss F:AωranxAFxranωFA
17 16 a1i AVF:AωranxAFxranωFA
18 carduniima AVF:AωranFAωran
19 iscard3 cardFA=FAFAωran
20 18 19 imbitrrdi AVF:AωrancardFA=FA
21 20 adantrd AVF:AωranxAFxrancardFA=FA
22 17 21 jcad AVF:AωranxAFxranωFAcardFA=FA
23 isinfcard ωFAcardFA=FAFAran
24 22 23 imbitrdi AVF:AωranxAFxranFAran
25 24 exp4d AVF:AωranxAFxranFAran
26 25 imp AVF:AωranxAFxranFAran
27 26 rexlimdv AVF:AωranxAFxranFAran
28 27 expimpd AVF:AωranxAFxranFAran
29 1 28 syl ABF:AωranxAFxranFAran