Metamath Proof Explorer


Theorem cardpred

Description: The cardinality function preserves predecessors. (Contributed by BTernaryTau, 18-Jul-2024)

Ref Expression
Assertion cardpred AdomcardBdomcardPredEcardAcardB=cardPredAB

Proof

Step Hyp Ref Expression
1 cardf2 card:x|yOnyxOn
2 ffun card:x|yOnyxOnFuncard
3 2 funfnd card:x|yOnyxOncardFndomcard
4 1 3 mp1i AdomcardBdomcardcardFndomcard
5 fvex cardyV
6 5 epeli cardxEcardycardxcardy
7 cardsdom2 xdomcardydomcardcardxcardyxy
8 6 7 bitr2id xdomcardydomcardxycardxEcardy
9 8 rgen2 xdomcardydomcardxycardxEcardy
10 9 a1i AdomcardBdomcardxdomcardydomcardxycardxEcardy
11 simpl AdomcardBdomcardAdomcard
12 simpr AdomcardBdomcardBdomcard
13 4 10 11 12 fnrelpredd AdomcardBdomcardPredEcardAcardB=cardPredAB