Metamath Proof Explorer


Theorem catass

Description: Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses catcocl.b B=BaseC
catcocl.h H=HomC
catcocl.o ·˙=compC
catcocl.c φCCat
catcocl.x φXB
catcocl.y φYB
catcocl.z φZB
catcocl.f φFXHY
catcocl.g φGYHZ
catass.w φWB
catass.g φKZHW
Assertion catass φKYZ·˙WGXY·˙WF=KXZ·˙WGXY·˙ZF

Proof

Step Hyp Ref Expression
1 catcocl.b B=BaseC
2 catcocl.h H=HomC
3 catcocl.o ·˙=compC
4 catcocl.c φCCat
5 catcocl.x φXB
6 catcocl.y φYB
7 catcocl.z φZB
8 catcocl.f φFXHY
9 catcocl.g φGYHZ
10 catass.w φWB
11 catass.g φKZHW
12 1 2 3 iscat CCatCCatxBgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zf
13 12 ibi CCatxBgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zf
14 4 13 syl φxBgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zf
15 6 adantr φx=XYB
16 7 ad2antrr φx=Xy=YZB
17 8 ad3antrrr φx=Xy=Yz=ZFXHY
18 simpllr φx=Xy=Yz=Zx=X
19 simplr φx=Xy=Yz=Zy=Y
20 18 19 oveq12d φx=Xy=Yz=ZxHy=XHY
21 17 20 eleqtrrd φx=Xy=Yz=ZFxHy
22 9 ad4antr φx=Xy=Yz=Zf=FGYHZ
23 simpllr φx=Xy=Yz=Zf=Fy=Y
24 simplr φx=Xy=Yz=Zf=Fz=Z
25 23 24 oveq12d φx=Xy=Yz=Zf=FyHz=YHZ
26 22 25 eleqtrrd φx=Xy=Yz=Zf=FGyHz
27 10 ad5antr φx=Xy=Yz=Zf=Fg=GWB
28 11 ad6antr φx=Xy=Yz=Zf=Fg=Gw=WKZHW
29 simp-4r φx=Xy=Yz=Zf=Fg=Gw=Wz=Z
30 simpr φx=Xy=Yz=Zf=Fg=Gw=Ww=W
31 29 30 oveq12d φx=Xy=Yz=Zf=Fg=Gw=WzHw=ZHW
32 28 31 eleqtrrd φx=Xy=Yz=Zf=Fg=Gw=WKzHw
33 simp-7r φx=Xy=Yz=Zf=Fg=Gw=Wk=Kx=X
34 simp-6r φx=Xy=Yz=Zf=Fg=Gw=Wk=Ky=Y
35 33 34 opeq12d φx=Xy=Yz=Zf=Fg=Gw=Wk=Kxy=XY
36 simplr φx=Xy=Yz=Zf=Fg=Gw=Wk=Kw=W
37 35 36 oveq12d φx=Xy=Yz=Zf=Fg=Gw=Wk=Kxy·˙w=XY·˙W
38 simp-5r φx=Xy=Yz=Zf=Fg=Gw=Wk=Kz=Z
39 34 38 opeq12d φx=Xy=Yz=Zf=Fg=Gw=Wk=Kyz=YZ
40 39 36 oveq12d φx=Xy=Yz=Zf=Fg=Gw=Wk=Kyz·˙w=YZ·˙W
41 simpr φx=Xy=Yz=Zf=Fg=Gw=Wk=Kk=K
42 simpllr φx=Xy=Yz=Zf=Fg=Gw=Wk=Kg=G
43 40 41 42 oveq123d φx=Xy=Yz=Zf=Fg=Gw=Wk=Kkyz·˙wg=KYZ·˙WG
44 simp-4r φx=Xy=Yz=Zf=Fg=Gw=Wk=Kf=F
45 37 43 44 oveq123d φx=Xy=Yz=Zf=Fg=Gw=Wk=Kkyz·˙wgxy·˙wf=KYZ·˙WGXY·˙WF
46 33 38 opeq12d φx=Xy=Yz=Zf=Fg=Gw=Wk=Kxz=XZ
47 46 36 oveq12d φx=Xy=Yz=Zf=Fg=Gw=Wk=Kxz·˙w=XZ·˙W
48 35 38 oveq12d φx=Xy=Yz=Zf=Fg=Gw=Wk=Kxy·˙z=XY·˙Z
49 48 42 44 oveq123d φx=Xy=Yz=Zf=Fg=Gw=Wk=Kgxy·˙zf=GXY·˙ZF
50 47 41 49 oveq123d φx=Xy=Yz=Zf=Fg=Gw=Wk=Kkxz·˙wgxy·˙zf=KXZ·˙WGXY·˙ZF
51 45 50 eqeq12d φx=Xy=Yz=Zf=Fg=Gw=Wk=Kkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfKYZ·˙WGXY·˙WF=KXZ·˙WGXY·˙ZF
52 32 51 rspcdv φx=Xy=Yz=Zf=Fg=Gw=WkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfKYZ·˙WGXY·˙WF=KXZ·˙WGXY·˙ZF
53 27 52 rspcimdv φx=Xy=Yz=Zf=Fg=GwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfKYZ·˙WGXY·˙WF=KXZ·˙WGXY·˙ZF
54 53 adantld φx=Xy=Yz=Zf=Fg=Ggxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfKYZ·˙WGXY·˙WF=KXZ·˙WGXY·˙ZF
55 26 54 rspcimdv φx=Xy=Yz=Zf=FgyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfKYZ·˙WGXY·˙WF=KXZ·˙WGXY·˙ZF
56 21 55 rspcimdv φx=Xy=Yz=ZfxHygyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfKYZ·˙WGXY·˙WF=KXZ·˙WGXY·˙ZF
57 16 56 rspcimdv φx=Xy=YzBfxHygyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfKYZ·˙WGXY·˙WF=KXZ·˙WGXY·˙ZF
58 15 57 rspcimdv φx=XyBzBfxHygyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfKYZ·˙WGXY·˙WF=KXZ·˙WGXY·˙ZF
59 58 adantld φx=XgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfKYZ·˙WGXY·˙WF=KXZ·˙WGXY·˙ZF
60 5 59 rspcimdv φxBgxHxyBfyHxgyx·˙xf=ffxHyfxx·˙yg=fyBzBfxHygyHzgxy·˙zfxHzwBkzHwkyz·˙wgxy·˙wf=kxz·˙wgxy·˙zfKYZ·˙WGXY·˙WF=KXZ·˙WGXY·˙ZF
61 14 60 mpd φKYZ·˙WGXY·˙WF=KXZ·˙WGXY·˙ZF