Description: Associativity of composition in a category. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | catcocl.b | |
|
catcocl.h | |
||
catcocl.o | |
||
catcocl.c | |
||
catcocl.x | |
||
catcocl.y | |
||
catcocl.z | |
||
catcocl.f | |
||
catcocl.g | |
||
catass.w | |
||
catass.g | |
||
Assertion | catass | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | catcocl.b | |
|
2 | catcocl.h | |
|
3 | catcocl.o | |
|
4 | catcocl.c | |
|
5 | catcocl.x | |
|
6 | catcocl.y | |
|
7 | catcocl.z | |
|
8 | catcocl.f | |
|
9 | catcocl.g | |
|
10 | catass.w | |
|
11 | catass.g | |
|
12 | 1 2 3 | iscat | |
13 | 12 | ibi | |
14 | 4 13 | syl | |
15 | 6 | adantr | |
16 | 7 | ad2antrr | |
17 | 8 | ad3antrrr | |
18 | simpllr | |
|
19 | simplr | |
|
20 | 18 19 | oveq12d | |
21 | 17 20 | eleqtrrd | |
22 | 9 | ad4antr | |
23 | simpllr | |
|
24 | simplr | |
|
25 | 23 24 | oveq12d | |
26 | 22 25 | eleqtrrd | |
27 | 10 | ad5antr | |
28 | 11 | ad6antr | |
29 | simp-4r | |
|
30 | simpr | |
|
31 | 29 30 | oveq12d | |
32 | 28 31 | eleqtrrd | |
33 | simp-7r | |
|
34 | simp-6r | |
|
35 | 33 34 | opeq12d | |
36 | simplr | |
|
37 | 35 36 | oveq12d | |
38 | simp-5r | |
|
39 | 34 38 | opeq12d | |
40 | 39 36 | oveq12d | |
41 | simpr | |
|
42 | simpllr | |
|
43 | 40 41 42 | oveq123d | |
44 | simp-4r | |
|
45 | 37 43 44 | oveq123d | |
46 | 33 38 | opeq12d | |
47 | 46 36 | oveq12d | |
48 | 35 38 | oveq12d | |
49 | 48 42 44 | oveq123d | |
50 | 47 41 49 | oveq123d | |
51 | 45 50 | eqeq12d | |
52 | 32 51 | rspcdv | |
53 | 27 52 | rspcimdv | |
54 | 53 | adantld | |
55 | 26 54 | rspcimdv | |
56 | 21 55 | rspcimdv | |
57 | 16 56 | rspcimdv | |
58 | 15 57 | rspcimdv | |
59 | 58 | adantld | |
60 | 5 59 | rspcimdv | |
61 | 14 60 | mpd | |