| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ccatcan2d.a |  | 
						
							| 2 |  | ccatcan2d.b |  | 
						
							| 3 |  | ccatcan2d.c |  | 
						
							| 4 |  | simpr |  | 
						
							| 5 |  | lencl |  | 
						
							| 6 | 1 5 | syl |  | 
						
							| 7 | 6 | nn0cnd |  | 
						
							| 8 | 7 | adantr |  | 
						
							| 9 |  | lencl |  | 
						
							| 10 | 2 9 | syl |  | 
						
							| 11 | 10 | nn0cnd |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | lencl |  | 
						
							| 14 | 3 13 | syl |  | 
						
							| 15 | 14 | nn0cnd |  | 
						
							| 16 | 15 | adantr |  | 
						
							| 17 |  | ccatlen |  | 
						
							| 18 | 1 3 17 | syl2anc |  | 
						
							| 19 |  | fveq2 |  | 
						
							| 20 | 18 19 | sylan9req |  | 
						
							| 21 |  | ccatlen |  | 
						
							| 22 | 2 3 21 | syl2anc |  | 
						
							| 23 | 22 | adantr |  | 
						
							| 24 | 20 23 | eqtrd |  | 
						
							| 25 | 8 12 16 24 | addcan2ad |  | 
						
							| 26 | 4 25 | oveq12d |  | 
						
							| 27 | 26 | ex |  | 
						
							| 28 |  | pfxccat1 |  | 
						
							| 29 | 1 3 28 | syl2anc |  | 
						
							| 30 |  | pfxccat1 |  | 
						
							| 31 | 2 3 30 | syl2anc |  | 
						
							| 32 | 29 31 | eqeq12d |  | 
						
							| 33 | 27 32 | sylibd |  | 
						
							| 34 |  | oveq1 |  | 
						
							| 35 | 33 34 | impbid1 |  |