Metamath Proof Explorer


Theorem ccatfval

Description: Value of the concatenation operator. (Contributed by Stefan O'Rear, 15-Aug-2015)

Ref Expression
Assertion ccatfval SVTWS++T=x0..^S+Tifx0..^SSxTxS

Proof

Step Hyp Ref Expression
1 elex SVSV
2 elex TWTV
3 fveq2 s=Ss=S
4 fveq2 t=Tt=T
5 3 4 oveqan12d s=St=Ts+t=S+T
6 5 oveq2d s=St=T0..^s+t=0..^S+T
7 3 oveq2d s=S0..^s=0..^S
8 7 eleq2d s=Sx0..^sx0..^S
9 8 adantr s=St=Tx0..^sx0..^S
10 fveq1 s=Ssx=Sx
11 10 adantr s=St=Tsx=Sx
12 simpr s=St=Tt=T
13 3 oveq2d s=Sxs=xS
14 13 adantr s=St=Txs=xS
15 12 14 fveq12d s=St=Ttxs=TxS
16 9 11 15 ifbieq12d s=St=Tifx0..^ssxtxs=ifx0..^SSxTxS
17 6 16 mpteq12dv s=St=Tx0..^s+tifx0..^ssxtxs=x0..^S+Tifx0..^SSxTxS
18 df-concat ++=sV,tVx0..^s+tifx0..^ssxtxs
19 ovex 0..^S+TV
20 19 mptex x0..^S+Tifx0..^SSxTxSV
21 17 18 20 ovmpoa SVTVS++T=x0..^S+Tifx0..^SSxTxS
22 1 2 21 syl2an SVTWS++T=x0..^S+Tifx0..^SSxTxS