Metamath Proof Explorer


Theorem ccats1alpha

Description: A concatenation of a word with a singleton word is a word over an alphabet S iff the symbols of both words belong to the alphabet S . (Contributed by AV, 27-Mar-2022)

Ref Expression
Assertion ccats1alpha AWordVXUA++⟨“X”⟩WordSAWordSXS

Proof

Step Hyp Ref Expression
1 wrdv AWordVAWordV
2 s1cli ⟨“X”⟩WordV
3 2 a1i XU⟨“X”⟩WordV
4 ccatalpha AWordV⟨“X”⟩WordVA++⟨“X”⟩WordSAWordS⟨“X”⟩WordS
5 1 3 4 syl2an AWordVXUA++⟨“X”⟩WordSAWordS⟨“X”⟩WordS
6 simpr XU⟨“X”⟩WordS⟨“X”⟩WordS
7 s1len ⟨“X”⟩=1
8 wrdl1exs1 ⟨“X”⟩WordS⟨“X”⟩=1wS⟨“X”⟩=⟨“w”⟩
9 6 7 8 sylancl XU⟨“X”⟩WordSwS⟨“X”⟩=⟨“w”⟩
10 elex XUXV
11 10 adantr XU⟨“X”⟩WordSXV
12 elex wSwV
13 s111 XVwV⟨“X”⟩=⟨“w”⟩X=w
14 11 12 13 syl2an XU⟨“X”⟩WordSwS⟨“X”⟩=⟨“w”⟩X=w
15 simpr XU⟨“X”⟩WordSwSwS
16 eleq1 X=wXSwS
17 15 16 syl5ibrcom XU⟨“X”⟩WordSwSX=wXS
18 14 17 sylbid XU⟨“X”⟩WordSwS⟨“X”⟩=⟨“w”⟩XS
19 18 rexlimdva XU⟨“X”⟩WordSwS⟨“X”⟩=⟨“w”⟩XS
20 9 19 mpd XU⟨“X”⟩WordSXS
21 20 ex XU⟨“X”⟩WordSXS
22 s1cl XS⟨“X”⟩WordS
23 21 22 impbid1 XU⟨“X”⟩WordSXS
24 23 anbi2d XUAWordS⟨“X”⟩WordSAWordSXS
25 24 adantl AWordVXUAWordS⟨“X”⟩WordSAWordSXS
26 5 25 bitrd AWordVXUA++⟨“X”⟩WordSAWordSXS