Metamath Proof Explorer


Theorem cdaf

Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses arwrcl.a A=ArrowC
arwdm.b B=BaseC
Assertion cdaf codaA:AB

Proof

Step Hyp Ref Expression
1 arwrcl.a A=ArrowC
2 arwdm.b B=BaseC
3 fo2nd 2nd:VontoV
4 fofn 2nd:VontoV2ndFnV
5 3 4 ax-mp 2ndFnV
6 fo1st 1st:VontoV
7 fof 1st:VontoV1st:VV
8 6 7 ax-mp 1st:VV
9 fnfco 2ndFnV1st:VV2nd1stFnV
10 5 8 9 mp2an 2nd1stFnV
11 df-coda coda=2nd1st
12 11 fneq1i codaFnV2nd1stFnV
13 10 12 mpbir codaFnV
14 ssv AV
15 fnssres codaFnVAVcodaAFnA
16 13 14 15 mp2an codaAFnA
17 fvres xAcodaAx=codax
18 1 2 arwcd xAcodaxB
19 17 18 eqeltrd xAcodaAxB
20 19 rgen xAcodaAxB
21 ffnfv codaA:ABcodaAFnAxAcodaAxB
22 16 20 21 mpbir2an codaA:AB