| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemd4.l |  | 
						
							| 2 |  | cdlemd4.j |  | 
						
							| 3 |  | cdlemd4.a |  | 
						
							| 4 |  | cdlemd4.h |  | 
						
							| 5 |  | cdlemd4.t |  | 
						
							| 6 |  | simp3 |  | 
						
							| 7 | 6 | oveq2d |  | 
						
							| 8 | 7 | oveq1d |  | 
						
							| 9 |  | simp1l |  | 
						
							| 10 |  | simp1rl |  | 
						
							| 11 |  | simp21 |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 |  | eqid |  | 
						
							| 14 | 1 2 12 3 4 5 13 | trlval2 |  | 
						
							| 15 | 9 10 11 14 | syl3anc |  | 
						
							| 16 |  | simp1rr |  | 
						
							| 17 | 1 2 12 3 4 5 13 | trlval2 |  | 
						
							| 18 | 9 16 11 17 | syl3anc |  | 
						
							| 19 | 8 15 18 | 3eqtr4d |  | 
						
							| 20 | 19 | oveq2d |  | 
						
							| 21 | 6 | oveq1d |  | 
						
							| 22 | 20 21 | oveq12d |  | 
						
							| 23 |  | simp22 |  | 
						
							| 24 |  | simp23 |  | 
						
							| 25 | 1 2 12 3 4 5 13 | cdlemc |  | 
						
							| 26 | 9 10 11 23 24 25 | syl131anc |  | 
						
							| 27 |  | oveq2 |  | 
						
							| 28 | 27 | breq2d |  | 
						
							| 29 | 28 | notbid |  | 
						
							| 30 | 29 | biimpd |  | 
						
							| 31 | 6 24 30 | sylc |  | 
						
							| 32 | 1 2 12 3 4 5 13 | cdlemc |  | 
						
							| 33 | 9 16 11 23 31 32 | syl131anc |  | 
						
							| 34 | 22 26 33 | 3eqtr4d |  |