| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemd4.l |
|
| 2 |
|
cdlemd4.j |
|
| 3 |
|
cdlemd4.a |
|
| 4 |
|
cdlemd4.h |
|
| 5 |
|
cdlemd4.t |
|
| 6 |
|
simp3 |
|
| 7 |
6
|
oveq2d |
|
| 8 |
7
|
oveq1d |
|
| 9 |
|
simp1l |
|
| 10 |
|
simp1rl |
|
| 11 |
|
simp21 |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
1 2 12 3 4 5 13
|
trlval2 |
|
| 15 |
9 10 11 14
|
syl3anc |
|
| 16 |
|
simp1rr |
|
| 17 |
1 2 12 3 4 5 13
|
trlval2 |
|
| 18 |
9 16 11 17
|
syl3anc |
|
| 19 |
8 15 18
|
3eqtr4d |
|
| 20 |
19
|
oveq2d |
|
| 21 |
6
|
oveq1d |
|
| 22 |
20 21
|
oveq12d |
|
| 23 |
|
simp22 |
|
| 24 |
|
simp23 |
|
| 25 |
1 2 12 3 4 5 13
|
cdlemc |
|
| 26 |
9 10 11 23 24 25
|
syl131anc |
|
| 27 |
|
oveq2 |
|
| 28 |
27
|
breq2d |
|
| 29 |
28
|
notbid |
|
| 30 |
29
|
biimpd |
|
| 31 |
6 24 30
|
sylc |
|
| 32 |
1 2 12 3 4 5 13
|
cdlemc |
|
| 33 |
9 16 11 23 31 32
|
syl131anc |
|
| 34 |
22 26 33
|
3eqtr4d |
|