Metamath Proof Explorer


Theorem cdlemd6

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 31-May-2012)

Ref Expression
Hypotheses cdlemd4.l ˙=K
cdlemd4.j ˙=joinK
cdlemd4.a A=AtomsK
cdlemd4.h H=LHypK
cdlemd4.t T=LTrnKW
Assertion cdlemd6 KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPFQ=GQ

Proof

Step Hyp Ref Expression
1 cdlemd4.l ˙=K
2 cdlemd4.j ˙=joinK
3 cdlemd4.a A=AtomsK
4 cdlemd4.h H=LHypK
5 cdlemd4.t T=LTrnKW
6 simp3 KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPFP=GP
7 6 oveq2d KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPP˙FP=P˙GP
8 7 oveq1d KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPP˙FPmeetKW=P˙GPmeetKW
9 simp1l KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPKHLWH
10 simp1rl KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPFT
11 simp21 KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPPA¬P˙W
12 eqid meetK=meetK
13 eqid trLKW=trLKW
14 1 2 12 3 4 5 13 trlval2 KHLWHFTPA¬P˙WtrLKWF=P˙FPmeetKW
15 9 10 11 14 syl3anc KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPtrLKWF=P˙FPmeetKW
16 simp1rr KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPGT
17 1 2 12 3 4 5 13 trlval2 KHLWHGTPA¬P˙WtrLKWG=P˙GPmeetKW
18 9 16 11 17 syl3anc KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPtrLKWG=P˙GPmeetKW
19 8 15 18 3eqtr4d KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPtrLKWF=trLKWG
20 19 oveq2d KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPQ˙trLKWF=Q˙trLKWG
21 6 oveq1d KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPFP˙P˙QmeetKW=GP˙P˙QmeetKW
22 20 21 oveq12d KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPQ˙trLKWFmeetKFP˙P˙QmeetKW=Q˙trLKWGmeetKGP˙P˙QmeetKW
23 simp22 KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPQA¬Q˙W
24 simp23 KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GP¬Q˙P˙FP
25 1 2 12 3 4 5 13 cdlemc KHLWHFTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFQ=Q˙trLKWFmeetKFP˙P˙QmeetKW
26 9 10 11 23 24 25 syl131anc KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPFQ=Q˙trLKWFmeetKFP˙P˙QmeetKW
27 oveq2 FP=GPP˙FP=P˙GP
28 27 breq2d FP=GPQ˙P˙FPQ˙P˙GP
29 28 notbid FP=GP¬Q˙P˙FP¬Q˙P˙GP
30 29 biimpd FP=GP¬Q˙P˙FP¬Q˙P˙GP
31 6 24 30 sylc KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GP¬Q˙P˙GP
32 1 2 12 3 4 5 13 cdlemc KHLWHGTPA¬P˙WQA¬Q˙W¬Q˙P˙GPGQ=Q˙trLKWGmeetKGP˙P˙QmeetKW
33 9 16 11 23 31 32 syl131anc KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPGQ=Q˙trLKWGmeetKGP˙P˙QmeetKW
34 22 26 33 3eqtr4d KHLWHFTGTPA¬P˙WQA¬Q˙W¬Q˙P˙FPFP=GPFQ=GQ