Metamath Proof Explorer


Theorem cdleme11h

Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme11 . (Contributed by NM, 14-Jun-2012)

Ref Expression
Hypotheses cdleme11.l ˙=K
cdleme11.j ˙=joinK
cdleme11.m ˙=meetK
cdleme11.a A=AtomsK
cdleme11.h H=LHypK
cdleme11.u U=P˙Q˙W
cdleme11.c C=P˙S˙W
cdleme11.d D=P˙T˙W
cdleme11.f F=S˙U˙Q˙P˙S˙W
Assertion cdleme11h KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QFQ

Proof

Step Hyp Ref Expression
1 cdleme11.l ˙=K
2 cdleme11.j ˙=joinK
3 cdleme11.m ˙=meetK
4 cdleme11.a A=AtomsK
5 cdleme11.h H=LHypK
6 cdleme11.u U=P˙Q˙W
7 cdleme11.c C=P˙S˙W
8 cdleme11.d D=P˙T˙W
9 cdleme11.f F=S˙U˙Q˙P˙S˙W
10 simp1 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QKHLWH
11 simp21l KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QPA
12 simp23 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QSA
13 simp22l KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QQA
14 simp22r KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙Q¬Q˙W
15 1 2 3 4 5 7 cdleme0c KHLWHPASAQA¬Q˙WCQ
16 10 11 12 13 14 15 syl122anc KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QCQ
17 16 necomd KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QQC
18 simp1l KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QKHL
19 simp21 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QPA¬P˙W
20 simp3r KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙Q¬S˙P˙Q
21 1 2 3 4 cdleme00a KHLPAQASA¬S˙P˙QSP
22 18 11 13 12 20 21 syl131anc KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QSP
23 22 necomd KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QPS
24 1 2 3 4 5 7 cdleme9a KHLWHPA¬P˙WSAPSCA
25 10 19 12 23 24 syl112anc KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QCA
26 2 4 lnnat KHLQACAQC¬Q˙CA
27 18 13 25 26 syl3anc KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QQC¬Q˙CA
28 17 27 mpbid KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙Q¬Q˙CA
29 2 4 hlatjidm KHLQAQ˙Q=Q
30 18 13 29 syl2anc KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QQ˙Q=Q
31 30 13 eqeltrd KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QQ˙QA
32 oveq2 F=QQ˙F=Q˙Q
33 32 eleq1d F=QQ˙FAQ˙QA
34 31 33 syl5ibrcom KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QF=QQ˙FA
35 simp22 KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QQA¬Q˙W
36 simp3l KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QPQ
37 1 2 3 4 5 6 7 6 9 cdleme11g KHLWHPAQA¬Q˙WSAPQQ˙F=Q˙C
38 10 11 35 12 36 37 syl131anc KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QQ˙F=Q˙C
39 38 eleq1d KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QQ˙FAQ˙CA
40 34 39 sylibd KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QF=QQ˙CA
41 40 necon3bd KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙Q¬Q˙CAFQ
42 28 41 mpd KHLWHPA¬P˙WQA¬Q˙WSAPQ¬S˙P˙QFQ