| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme11.l |
|
| 2 |
|
cdleme11.j |
|
| 3 |
|
cdleme11.m |
|
| 4 |
|
cdleme11.a |
|
| 5 |
|
cdleme11.h |
|
| 6 |
|
cdleme11.u |
|
| 7 |
|
cdleme11.c |
|
| 8 |
|
cdleme11.d |
|
| 9 |
|
cdleme11.f |
|
| 10 |
|
simp1 |
|
| 11 |
|
simp21l |
|
| 12 |
|
simp23 |
|
| 13 |
|
simp22l |
|
| 14 |
|
simp22r |
|
| 15 |
1 2 3 4 5 7
|
cdleme0c |
|
| 16 |
10 11 12 13 14 15
|
syl122anc |
|
| 17 |
16
|
necomd |
|
| 18 |
|
simp1l |
|
| 19 |
|
simp21 |
|
| 20 |
|
simp3r |
|
| 21 |
1 2 3 4
|
cdleme00a |
|
| 22 |
18 11 13 12 20 21
|
syl131anc |
|
| 23 |
22
|
necomd |
|
| 24 |
1 2 3 4 5 7
|
cdleme9a |
|
| 25 |
10 19 12 23 24
|
syl112anc |
|
| 26 |
2 4
|
lnnat |
|
| 27 |
18 13 25 26
|
syl3anc |
|
| 28 |
17 27
|
mpbid |
|
| 29 |
2 4
|
hlatjidm |
|
| 30 |
18 13 29
|
syl2anc |
|
| 31 |
30 13
|
eqeltrd |
|
| 32 |
|
oveq2 |
|
| 33 |
32
|
eleq1d |
|
| 34 |
31 33
|
syl5ibrcom |
|
| 35 |
|
simp22 |
|
| 36 |
|
simp3l |
|
| 37 |
1 2 3 4 5 6 7 6 9
|
cdleme11g |
|
| 38 |
10 11 35 12 36 37
|
syl131anc |
|
| 39 |
38
|
eleq1d |
|
| 40 |
34 39
|
sylibd |
|
| 41 |
40
|
necon3bd |
|
| 42 |
28 41
|
mpd |
|