Metamath Proof Explorer


Theorem cdleme18c

Description: Part of proof of Lemma E in Crawley p. 114, 2nd sentence of 4th paragraph. F , G represent f(s), f_s(q) respectively. We show -. f_s(q) = p whenever p \/ q has three atoms under it (implied by the negated existential condition). (Contributed by NM, 10-Nov-2012)

Ref Expression
Hypotheses cdleme18.l ˙=K
cdleme18.j ˙=joinK
cdleme18.m ˙=meetK
cdleme18.a A=AtomsK
cdleme18.h H=LHypK
cdleme18.u U=P˙Q˙W
cdleme18.f F=S˙U˙Q˙P˙S˙W
cdleme18.g G=P˙Q˙F˙Q˙S˙W
Assertion cdleme18c KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rG=P

Proof

Step Hyp Ref Expression
1 cdleme18.l ˙=K
2 cdleme18.j ˙=joinK
3 cdleme18.m ˙=meetK
4 cdleme18.a A=AtomsK
5 cdleme18.h H=LHypK
6 cdleme18.u U=P˙Q˙W
7 cdleme18.f F=S˙U˙Q˙P˙S˙W
8 cdleme18.g G=P˙Q˙F˙Q˙S˙W
9 simp31 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rPQ
10 simp32 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙r¬S˙P˙Q
11 9 10 jca KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rPQ¬S˙P˙Q
12 1 2 3 4 5 6 7 8 cdleme18b KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QGQ
13 11 12 syld3an3 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rGQ
14 13 neneqd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙r¬G=Q
15 simp1l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rKHL
16 simp1r KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rWH
17 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rPA
18 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rQA
19 simp23l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rSA
20 1 2 3 4 5 6 7 8 cdleme4a KHLWHPAQAQASAG˙P˙Q
21 15 16 17 18 18 19 20 syl231anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rG˙P˙Q
22 simp33 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
23 simp1 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWH
24 simp21 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rPA¬P˙W
25 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rQA¬Q˙W
26 simp23 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rSA¬S˙W
27 1 2 4 hlatlej2 KHLPAQAQ˙P˙Q
28 15 17 18 27 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rQ˙P˙Q
29 1 2 3 4 5 6 7 8 cdleme7ga KHLWHPA¬P˙WQA¬Q˙WQA¬Q˙WSA¬S˙WPQQ˙P˙Q¬S˙P˙QGA
30 23 24 25 25 26 9 28 10 29 syl323anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rGA
31 1 2 3 4 5 6 7 8 cdleme18a KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬G˙W
32 11 31 syld3an3 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙r¬G˙W
33 1 2 4 cdleme0nex KHLG˙P˙Q¬rA¬r˙WP˙r=Q˙rPAQAPQGA¬G˙WG=PG=Q
34 15 21 22 17 18 9 30 32 33 syl332anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rG=PG=Q
35 34 ord KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙r¬G=PG=Q
36 14 35 mt3d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬rA¬r˙WP˙r=Q˙rG=P