Description: Part of proof of Lemma E in Crawley p. 114, 2nd sentence of 4th paragraph. F , G represent f(s), f_s(q) respectively. We show -. f_s(q) = p whenever p \/ q has three atoms under it (implied by the negated existential condition). (Contributed by NM, 10-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme18.l | |
|
cdleme18.j | |
||
cdleme18.m | |
||
cdleme18.a | |
||
cdleme18.h | |
||
cdleme18.u | |
||
cdleme18.f | |
||
cdleme18.g | |
||
Assertion | cdleme18c | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme18.l | |
|
2 | cdleme18.j | |
|
3 | cdleme18.m | |
|
4 | cdleme18.a | |
|
5 | cdleme18.h | |
|
6 | cdleme18.u | |
|
7 | cdleme18.f | |
|
8 | cdleme18.g | |
|
9 | simp31 | |
|
10 | simp32 | |
|
11 | 9 10 | jca | |
12 | 1 2 3 4 5 6 7 8 | cdleme18b | |
13 | 11 12 | syld3an3 | |
14 | 13 | neneqd | |
15 | simp1l | |
|
16 | simp1r | |
|
17 | simp21l | |
|
18 | simp22l | |
|
19 | simp23l | |
|
20 | 1 2 3 4 5 6 7 8 | cdleme4a | |
21 | 15 16 17 18 18 19 20 | syl231anc | |
22 | simp33 | |
|
23 | simp1 | |
|
24 | simp21 | |
|
25 | simp22 | |
|
26 | simp23 | |
|
27 | 1 2 4 | hlatlej2 | |
28 | 15 17 18 27 | syl3anc | |
29 | 1 2 3 4 5 6 7 8 | cdleme7ga | |
30 | 23 24 25 25 26 9 28 10 29 | syl323anc | |
31 | 1 2 3 4 5 6 7 8 | cdleme18a | |
32 | 11 31 | syld3an3 | |
33 | 1 2 4 | cdleme0nex | |
34 | 15 21 22 17 18 9 30 32 33 | syl332anc | |
35 | 34 | ord | |
36 | 14 35 | mt3d | |