Metamath Proof Explorer


Theorem cdleme18b

Description: Part of proof of Lemma E in Crawley p. 114, 2nd sentence of 4th paragraph. F , G represent f(s), f_s(q) respectively. We show -. f_s(q) =/= q. (Contributed by NM, 12-Oct-2012)

Ref Expression
Hypotheses cdleme18.l ˙=K
cdleme18.j ˙=joinK
cdleme18.m ˙=meetK
cdleme18.a A=AtomsK
cdleme18.h H=LHypK
cdleme18.u U=P˙Q˙W
cdleme18.f F=S˙U˙Q˙P˙S˙W
cdleme18.g G=P˙Q˙F˙Q˙S˙W
Assertion cdleme18b KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QGQ

Proof

Step Hyp Ref Expression
1 cdleme18.l ˙=K
2 cdleme18.j ˙=joinK
3 cdleme18.m ˙=meetK
4 cdleme18.a A=AtomsK
5 cdleme18.h H=LHypK
6 cdleme18.u U=P˙Q˙W
7 cdleme18.f F=S˙U˙Q˙P˙S˙W
8 cdleme18.g G=P˙Q˙F˙Q˙S˙W
9 eqid Q=Q
10 oveq2 G=QQ˙G=Q˙Q
11 simp1l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QKHL
12 simp22l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QQA
13 2 4 hlatjidm KHLQAQ˙Q=Q
14 11 12 13 syl2anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QQ˙Q=Q
15 10 14 sylan9eqr KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QG=QQ˙G=Q
16 simp1 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QKHLWH
17 simp21l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QPA
18 simp22 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QQA¬Q˙W
19 simp23 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QSA¬S˙W
20 1 2 4 hlatlej2 KHLPAQAQ˙P˙Q
21 11 17 12 20 syl3anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QQ˙P˙Q
22 1 2 3 4 5 6 7 8 cdleme5 KHLWHPAQAQA¬Q˙WSA¬S˙WQ˙P˙QQ˙G=P˙Q
23 16 17 12 18 19 21 22 syl132anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QQ˙G=P˙Q
24 23 adantr KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QG=QQ˙G=P˙Q
25 15 24 eqtr3d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QG=QQ=P˙Q
26 simp3l KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QPQ
27 2 4 2atneat KHLPAQAPQ¬P˙QA
28 11 17 12 26 27 syl13anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙Q¬P˙QA
29 nelne2 QA¬P˙QAQP˙Q
30 29 necomd QA¬P˙QAP˙QQ
31 12 28 30 syl2anc KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QP˙QQ
32 31 adantr KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QG=QP˙QQ
33 25 32 eqnetrd KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QG=QQQ
34 33 ex KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QG=QQQ
35 34 necon2d KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QQ=QGQ
36 9 35 mpi KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQ¬S˙P˙QGQ