Metamath Proof Explorer


Theorem cdleme18c

Description: Part of proof of Lemma E in Crawley p. 114, 2nd sentence of 4th paragraph. F , G represent f(s), f_s(q) respectively. We show -. f_s(q) = p whenever p \/ q has three atoms under it (implied by the negated existential condition). (Contributed by NM, 10-Nov-2012)

Ref Expression
Hypotheses cdleme18.l
|- .<_ = ( le ` K )
cdleme18.j
|- .\/ = ( join ` K )
cdleme18.m
|- ./\ = ( meet ` K )
cdleme18.a
|- A = ( Atoms ` K )
cdleme18.h
|- H = ( LHyp ` K )
cdleme18.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme18.f
|- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
cdleme18.g
|- G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( Q .\/ S ) ./\ W ) ) )
Assertion cdleme18c
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> G = P )

Proof

Step Hyp Ref Expression
1 cdleme18.l
 |-  .<_ = ( le ` K )
2 cdleme18.j
 |-  .\/ = ( join ` K )
3 cdleme18.m
 |-  ./\ = ( meet ` K )
4 cdleme18.a
 |-  A = ( Atoms ` K )
5 cdleme18.h
 |-  H = ( LHyp ` K )
6 cdleme18.u
 |-  U = ( ( P .\/ Q ) ./\ W )
7 cdleme18.f
 |-  F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
8 cdleme18.g
 |-  G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( Q .\/ S ) ./\ W ) ) )
9 simp31
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P =/= Q )
10 simp32
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. S .<_ ( P .\/ Q ) )
11 9 10 jca
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) )
12 1 2 3 4 5 6 7 8 cdleme18b
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> G =/= Q )
13 11 12 syld3an3
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> G =/= Q )
14 13 neneqd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. G = Q )
15 simp1l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> K e. HL )
16 simp1r
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> W e. H )
17 simp21l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> P e. A )
18 simp22l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q e. A )
19 simp23l
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> S e. A )
20 1 2 3 4 5 6 7 8 cdleme4a
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ Q e. A ) /\ S e. A ) -> G .<_ ( P .\/ Q ) )
21 15 16 17 18 18 19 20 syl231anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> G .<_ ( P .\/ Q ) )
22 simp33
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) )
23 simp1
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( K e. HL /\ W e. H ) )
24 simp21
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( P e. A /\ -. P .<_ W ) )
25 simp22
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
26 simp23
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( S e. A /\ -. S .<_ W ) )
27 1 2 4 hlatlej2
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) )
28 15 17 18 27 syl3anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> Q .<_ ( P .\/ Q ) )
29 1 2 3 4 5 6 7 8 cdleme7ga
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ Q .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> G e. A )
30 23 24 25 25 26 9 28 10 29 syl323anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> G e. A )
31 1 2 3 4 5 6 7 8 cdleme18a
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) ) ) -> -. G .<_ W )
32 11 31 syld3an3
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> -. G .<_ W )
33 1 2 4 cdleme0nex
 |-  ( ( ( K e. HL /\ G .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) /\ ( P e. A /\ Q e. A /\ P =/= Q ) /\ ( G e. A /\ -. G .<_ W ) ) -> ( G = P \/ G = Q ) )
34 15 21 22 17 18 9 30 32 33 syl332anc
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( G = P \/ G = Q ) )
35 34 ord
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> ( -. G = P -> G = Q ) )
36 14 35 mt3d
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( P =/= Q /\ -. S .<_ ( P .\/ Q ) /\ -. E. r e. A ( -. r .<_ W /\ ( P .\/ r ) = ( Q .\/ r ) ) ) ) -> G = P )