Metamath Proof Explorer


Theorem cdleme32b

Description: Part of proof of Lemma D in Crawley p. 113. (Contributed by NM, 19-Feb-2013)

Ref Expression
Hypotheses cdleme32.b B=BaseK
cdleme32.l ˙=K
cdleme32.j ˙=joinK
cdleme32.m ˙=meetK
cdleme32.a A=AtomsK
cdleme32.h H=LHypK
cdleme32.u U=P˙Q˙W
cdleme32.c C=s˙U˙Q˙P˙s˙W
cdleme32.d D=t˙U˙Q˙P˙t˙W
cdleme32.e E=P˙Q˙D˙s˙t˙W
cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
cdleme32.n N=ifs˙P˙QIC
cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
cdleme32.f F=xBifPQ¬x˙WOx
Assertion cdleme32b KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YFY=N˙Y˙W

Proof

Step Hyp Ref Expression
1 cdleme32.b B=BaseK
2 cdleme32.l ˙=K
3 cdleme32.j ˙=joinK
4 cdleme32.m ˙=meetK
5 cdleme32.a A=AtomsK
6 cdleme32.h H=LHypK
7 cdleme32.u U=P˙Q˙W
8 cdleme32.c C=s˙U˙Q˙P˙s˙W
9 cdleme32.d D=t˙U˙Q˙P˙t˙W
10 cdleme32.e E=P˙Q˙D˙s˙t˙W
11 cdleme32.i I=ιyB|tA¬t˙W¬t˙P˙Qy=E
12 cdleme32.n N=ifs˙P˙QIC
13 cdleme32.o O=ιzB|sA¬s˙Ws˙x˙W=xz=N˙x˙W
14 cdleme32.f F=xBifPQ¬x˙WOx
15 simp1 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YKHLWHPA¬P˙WQA¬Q˙W
16 simp22 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YYB
17 simp23l KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YPQ
18 simp23r KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙Y¬X˙W
19 simp33 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YX˙Y
20 simp11l KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YKHL
21 20 hllatd KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YKLat
22 simp21 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YXB
23 simp11r KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YWH
24 1 6 lhpbase WHWB
25 23 24 syl KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YWB
26 1 2 lattr KLatXBYBWBX˙YY˙WX˙W
27 21 22 16 25 26 syl13anc KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YX˙YY˙WX˙W
28 19 27 mpand KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YY˙WX˙W
29 18 28 mtod KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙Y¬Y˙W
30 17 29 jca KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YPQ¬Y˙W
31 simp31 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YsA¬s˙W
32 simp11 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YKHLWH
33 simp31l KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YsA
34 22 18 jca KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YXB¬X˙W
35 simp32 KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙Ys˙X˙W=X
36 1 2 3 4 5 6 cdleme30a KHLWHsAXB¬X˙WYBs˙X˙W=XX˙Ys˙Y˙W=Y
37 32 33 34 16 35 19 36 syl132anc KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙Ys˙Y˙W=Y
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme32a KHLWHPA¬P˙WQA¬Q˙WYBPQ¬Y˙WsA¬s˙Ws˙Y˙W=YFY=N˙Y˙W
39 15 16 30 31 37 38 syl122anc KHLWHPA¬P˙WQA¬Q˙WXBYBPQ¬X˙WsA¬s˙Ws˙X˙W=XX˙YFY=N˙Y˙W