Metamath Proof Explorer


Theorem cdleme48fv

Description: Part of proof of Lemma D in Crawley p. 113. TODO: Can this replace uses of cdleme32a ? TODO: Can this be used to help prove the R or S case where X is an atom? (Contributed by NM, 8-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b B=BaseK
cdlemef46.l ˙=K
cdlemef46.j ˙=joinK
cdlemef46.m ˙=meetK
cdlemef46.a A=AtomsK
cdlemef46.h H=LHypK
cdlemef46.u U=P˙Q˙W
cdlemef46.d D=t˙U˙Q˙P˙t˙W
cdlemefs46.e E=P˙Q˙D˙s˙t˙W
cdlemef46.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
Assertion cdleme48fv KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFX=FS˙X˙W

Proof

Step Hyp Ref Expression
1 cdlemef46.b B=BaseK
2 cdlemef46.l ˙=K
3 cdlemef46.j ˙=joinK
4 cdlemef46.m ˙=meetK
5 cdlemef46.a A=AtomsK
6 cdlemef46.h H=LHypK
7 cdlemef46.u U=P˙Q˙W
8 cdlemef46.d D=t˙U˙Q˙P˙t˙W
9 cdlemefs46.e E=P˙Q˙D˙s˙t˙W
10 cdlemef46.f F=xBifPQ¬x˙WιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙Wx
11 simp2rl KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XXB
12 simp2l KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XPQ
13 simp2rr KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=X¬X˙W
14 11 12 13 jca32 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XXBPQ¬X˙W
15 eqid s˙U˙Q˙P˙s˙W=s˙U˙Q˙P˙s˙W
16 eqid ιyB|tA¬t˙W¬t˙P˙Qy=E=ιyB|tA¬t˙W¬t˙P˙Qy=E
17 biid s˙P˙Qs˙P˙Q
18 vex sV
19 8 15 cdleme31sc sVs/tD=s˙U˙Q˙P˙s˙W
20 18 19 ax-mp s/tD=s˙U˙Q˙P˙s˙W
21 17 20 ifbieq2i ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es˙U˙Q˙P˙s˙W
22 eqid ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W=ιzB|sA¬s˙Ws˙x˙W=xz=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙x˙W
23 1 2 3 4 5 6 7 15 8 9 16 21 22 10 cdleme42b KHLWHPA¬P˙WQA¬Q˙WXBPQ¬X˙WSA¬S˙WS˙X˙W=XFX=S/sifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙X˙W
24 14 23 syld3an2 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFX=S/sifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙X˙W
25 simp1 KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XKHLWHPA¬P˙WQA¬Q˙W
26 simp3l KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XSA¬S˙W
27 eqid ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD=ifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD
28 1 2 3 4 5 6 7 20 8 9 16 27 22 10 cdleme32fva1 KHLWHPA¬P˙WQA¬Q˙WSA¬S˙WPQFS=S/sifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD
29 25 26 12 28 syl3anc KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFS=S/sifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD
30 29 oveq1d KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFS˙X˙W=S/sifs˙P˙QιyB|tA¬t˙W¬t˙P˙Qy=Es/tD˙X˙W
31 24 30 eqtr4d KHLWHPA¬P˙WQA¬Q˙WPQXB¬X˙WSA¬S˙WS˙X˙W=XFX=FS˙X˙W