Metamath Proof Explorer


Theorem cdlemedb

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. D represents s_2. (Contributed by NM, 20-Nov-2012)

Ref Expression
Hypotheses cdlemeda.l ˙=K
cdlemeda.j ˙=joinK
cdlemeda.m ˙=meetK
cdlemeda.a A=AtomsK
cdlemeda.h H=LHypK
cdlemeda.d D=R˙S˙W
cdlemedb.b B=BaseK
Assertion cdlemedb KHLWHRASADB

Proof

Step Hyp Ref Expression
1 cdlemeda.l ˙=K
2 cdlemeda.j ˙=joinK
3 cdlemeda.m ˙=meetK
4 cdlemeda.a A=AtomsK
5 cdlemeda.h H=LHypK
6 cdlemeda.d D=R˙S˙W
7 cdlemedb.b B=BaseK
8 hllat KHLKLat
9 8 ad2antrr KHLWHRASAKLat
10 simpll KHLWHRASAKHL
11 simprl KHLWHRASARA
12 simprr KHLWHRASASA
13 7 2 4 hlatjcl KHLRASAR˙SB
14 10 11 12 13 syl3anc KHLWHRASAR˙SB
15 7 5 lhpbase WHWB
16 15 ad2antlr KHLWHRASAWB
17 7 3 latmcl KLatR˙SBWBR˙S˙WB
18 9 14 16 17 syl3anc KHLWHRASAR˙S˙WB
19 6 18 eqeltrid KHLWHRASADB