Metamath Proof Explorer


Theorem cdlemefrs29clN

Description: TODO: NOT USED? Show closure of the unique element in cdlemefrs29cpre1 . (Contributed by NM, 29-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemefrs27.b B=BaseK
cdlemefrs27.l ˙=K
cdlemefrs27.j ˙=joinK
cdlemefrs27.m ˙=meetK
cdlemefrs27.a A=AtomsK
cdlemefrs27.h H=LHypK
cdlemefrs27.eq s=Rφψ
cdlemefrs27.nb KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙WφNB
cdlemefrs27.rnb KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψR/sNB
cdlemefrs29cl.o O=ιzB|sA¬s˙Ws˙R˙W=Rz=N˙R˙W
Assertion cdlemefrs29clN KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψOB

Proof

Step Hyp Ref Expression
1 cdlemefrs27.b B=BaseK
2 cdlemefrs27.l ˙=K
3 cdlemefrs27.j ˙=joinK
4 cdlemefrs27.m ˙=meetK
5 cdlemefrs27.a A=AtomsK
6 cdlemefrs27.h H=LHypK
7 cdlemefrs27.eq s=Rφψ
8 cdlemefrs27.nb KHLWHPA¬P˙WQA¬Q˙WPQsA¬s˙WφNB
9 cdlemefrs27.rnb KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψR/sNB
10 cdlemefrs29cl.o O=ιzB|sA¬s˙Ws˙R˙W=Rz=N˙R˙W
11 simpl11 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψsAKHLWH
12 simpl2r KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψsARA¬R˙W
13 simpl3 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψsAψ
14 simpr KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψsAsA
15 1 2 3 4 5 6 7 cdlemefrs29pre00 KHLWHRA¬R˙WψsA¬s˙Wφs˙R˙W=R¬s˙Ws˙R˙W=R
16 11 12 13 14 15 syl31anc KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψsA¬s˙Wφs˙R˙W=R¬s˙Ws˙R˙W=R
17 16 imbi1d KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψsA¬s˙Wφs˙R˙W=Rz=N˙R˙W¬s˙Ws˙R˙W=Rz=N˙R˙W
18 17 ralbidva KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψsA¬s˙Wφs˙R˙W=Rz=N˙R˙WsA¬s˙Ws˙R˙W=Rz=N˙R˙W
19 18 riotabidv KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψιzB|sA¬s˙Wφs˙R˙W=Rz=N˙R˙W=ιzB|sA¬s˙Ws˙R˙W=Rz=N˙R˙W
20 10 19 eqtr4id KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψO=ιzB|sA¬s˙Wφs˙R˙W=Rz=N˙R˙W
21 1 2 3 4 5 6 7 8 9 cdlemefrs29cpre1 KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙Wψ∃!zBsA¬s˙Wφs˙R˙W=Rz=N˙R˙W
22 riotacl ∃!zBsA¬s˙Wφs˙R˙W=Rz=N˙R˙WιzB|sA¬s˙Wφs˙R˙W=Rz=N˙R˙WB
23 21 22 syl KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψιzB|sA¬s˙Wφs˙R˙W=Rz=N˙R˙WB
24 20 23 eqeltrd KHLWHPA¬P˙WQA¬Q˙WPQRA¬R˙WψOB