Metamath Proof Explorer


Theorem cdlemg17e

Description: TODO: fix comment. (Contributed by NM, 8-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙=K
cdlemg12.j ˙=joinK
cdlemg12.m ˙=meetK
cdlemg12.a A=AtomsK
cdlemg12.h H=LHypK
cdlemg12.t T=LTrnKW
cdlemg12b.r R=trLKW
Assertion cdlemg17e KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFP˙FQ=FP˙RG

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙=K
2 cdlemg12.j ˙=joinK
3 cdlemg12.m ˙=meetK
4 cdlemg12.a A=AtomsK
5 cdlemg12.h H=LHypK
6 cdlemg12.t T=LTrnKW
7 cdlemg12b.r R=trLKW
8 simp11 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWH
9 simp12 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rPA¬P˙W
10 simp13 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rQA¬Q˙W
11 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFT
12 eqid P˙Q˙W=P˙Q˙W
13 5 6 1 2 4 3 12 cdlemg2k KHLWHPA¬P˙WQA¬Q˙WFTFP˙FQ=FP˙P˙Q˙W
14 8 9 10 11 13 syl121anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFP˙FQ=FP˙P˙Q˙W
15 simp22 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGT
16 1 2 3 4 5 6 7 trlval2 KHLWHGTPA¬P˙WRG=P˙GP˙W
17 8 15 9 16 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rRG=P˙GP˙W
18 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rKHLWHPA¬P˙WQA¬Q˙W
19 simp23 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rPQ
20 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGPP
21 simp32 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rRG˙P˙Q
22 simp33 KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙r¬rA¬r˙WP˙r=Q˙r
23 1 2 3 4 5 6 7 cdlemg17b KHLWHPA¬P˙WQA¬Q˙WGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGP=Q
24 18 15 19 20 21 22 23 syl123anc KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rGP=Q
25 24 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙GP=P˙Q
26 25 oveq1d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rP˙GP˙W=P˙Q˙W
27 17 26 eqtrd KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rRG=P˙Q˙W
28 27 oveq2d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFP˙RG=FP˙P˙Q˙W
29 14 28 eqtr4d KHLWHPA¬P˙WQA¬Q˙WFTGTPQGPPRG˙P˙Q¬rA¬r˙WP˙r=Q˙rFP˙FQ=FP˙RG