| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemg12.l |  | 
						
							| 2 |  | cdlemg12.j |  | 
						
							| 3 |  | cdlemg12.m |  | 
						
							| 4 |  | cdlemg12.a |  | 
						
							| 5 |  | cdlemg12.h |  | 
						
							| 6 |  | cdlemg12.t |  | 
						
							| 7 |  | cdlemg12b.r |  | 
						
							| 8 |  | simp11 |  | 
						
							| 9 |  | simp12 |  | 
						
							| 10 |  | simp13 |  | 
						
							| 11 |  | simp21 |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 5 6 1 2 4 3 12 | cdlemg2k |  | 
						
							| 14 | 8 9 10 11 13 | syl121anc |  | 
						
							| 15 |  | simp22 |  | 
						
							| 16 | 1 2 3 4 5 6 7 | trlval2 |  | 
						
							| 17 | 8 15 9 16 | syl3anc |  | 
						
							| 18 |  | simp1 |  | 
						
							| 19 |  | simp23 |  | 
						
							| 20 |  | simp31 |  | 
						
							| 21 |  | simp32 |  | 
						
							| 22 |  | simp33 |  | 
						
							| 23 | 1 2 3 4 5 6 7 | cdlemg17b |  | 
						
							| 24 | 18 15 19 20 21 22 23 | syl123anc |  | 
						
							| 25 | 24 | oveq2d |  | 
						
							| 26 | 25 | oveq1d |  | 
						
							| 27 | 17 26 | eqtrd |  | 
						
							| 28 | 27 | oveq2d |  | 
						
							| 29 | 14 28 | eqtr4d |  |