Metamath Proof Explorer


Theorem cdlemg29

Description: Eliminate ( FP ) =/= P and ( GP ) =/= P from cdlemg28 . TODO: would it be better to do this later? (Contributed by NM, 29-May-2013)

Ref Expression
Hypotheses cdlemg12.l ˙ = K
cdlemg12.j ˙ = join K
cdlemg12.m ˙ = meet K
cdlemg12.a A = Atoms K
cdlemg12.h H = LHyp K
cdlemg12.t T = LTrn K W
cdlemg12b.r R = trL K W
cdlemg31.n N = P ˙ v ˙ Q ˙ R F
cdlemg33.o O = P ˙ v ˙ Q ˙ R G
Assertion cdlemg29 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G P ˙ F G P ˙ W = Q ˙ F G Q ˙ W

Proof

Step Hyp Ref Expression
1 cdlemg12.l ˙ = K
2 cdlemg12.j ˙ = join K
3 cdlemg12.m ˙ = meet K
4 cdlemg12.a A = Atoms K
5 cdlemg12.h H = LHyp K
6 cdlemg12.t T = LTrn K W
7 cdlemg12b.r R = trL K W
8 cdlemg31.n N = P ˙ v ˙ Q ˙ R F
9 cdlemg33.o O = P ˙ v ˙ Q ˙ R G
10 simpl11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P = P K HL W H
11 simpl12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P = P P A ¬ P ˙ W
12 simpl13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P = P Q A ¬ Q ˙ W
13 simp23l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F T
14 13 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P = P F T
15 simp23r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G G T
16 15 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P = P G T
17 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P = P F P = P
18 1 2 3 4 5 6 7 cdlemg14f K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T F P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
19 10 11 12 14 16 17 18 syl123anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
20 simpl11 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G G P = P K HL W H
21 simpl12 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G G P = P P A ¬ P ˙ W
22 simpl13 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G G P = P Q A ¬ Q ˙ W
23 13 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G G P = P F T
24 15 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G G P = P G T
25 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G G P = P G P = P
26 1 2 3 4 5 6 7 cdlemg14g K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W F T G T G P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
27 20 21 22 23 24 25 26 syl123anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G G P = P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
28 simpl1 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W
29 simpl2 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P v A v ˙ W z A ¬ z ˙ W F T G T
30 simp31l K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G z N
31 30 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P z N
32 simp31r K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G z O
33 32 adantr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P z O
34 simpl32 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P z ˙ P ˙ v
35 31 33 34 3jca K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P z N z O z ˙ P ˙ v
36 simpl33 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P v R F v R G
37 simpr K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P F P P G P P
38 1 2 3 4 5 6 7 8 9 cdlemg28 K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
39 28 29 35 36 37 38 syl113anc K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G F P P G P P P ˙ F G P ˙ W = Q ˙ F G Q ˙ W
40 19 27 39 pm2.61da2ne K HL W H P A ¬ P ˙ W Q A ¬ Q ˙ W v A v ˙ W z A ¬ z ˙ W F T G T z N z O z ˙ P ˙ v v R F v R G P ˙ F G P ˙ W = Q ˙ F G Q ˙ W