Metamath Proof Explorer


Theorem cdlemg6d

Description: TODO: FIX COMMENT. (Contributed by NM, 27-Apr-2013)

Ref Expression
Hypotheses cdlemg4.l ˙=K
cdlemg4.a A=AtomsK
cdlemg4.h H=LHypK
cdlemg4.t T=LTrnKW
cdlemg4.r R=trLKW
cdlemg4.j ˙=joinK
cdlemg4b.v V=RG
Assertion cdlemg6d KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙GPFGQ=Q

Proof

Step Hyp Ref Expression
1 cdlemg4.l ˙=K
2 cdlemg4.a A=AtomsK
3 cdlemg4.h H=LHypK
4 cdlemg4.t T=LTrnKW
5 cdlemg4.r R=trLKW
6 cdlemg4.j ˙=joinK
7 cdlemg4b.v V=RG
8 simp1 KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PKHLWH
9 simp21 KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PPA¬P˙W
10 simp31 KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PGT
11 1 2 3 4 5 6 7 cdlemg4b1 KHLWHPA¬P˙WGTP˙V=P˙GP
12 8 9 10 11 syl3anc KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PP˙V=P˙GP
13 12 breq2d KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=Pr˙P˙Vr˙P˙GP
14 13 notbid KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=P¬r˙P˙V¬r˙P˙GP
15 14 anbi2d KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VrA¬r˙W¬r˙P˙GP
16 1 2 3 4 5 6 7 cdlemg6c KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙VFGQ=Q
17 15 16 sylbird KHLWHPA¬P˙WQA¬Q˙WFTGTQ˙P˙VFGP=PrA¬r˙W¬r˙P˙GPFGQ=Q