| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemg4.l |
|
| 2 |
|
cdlemg4.a |
|
| 3 |
|
cdlemg4.h |
|
| 4 |
|
cdlemg4.t |
|
| 5 |
|
cdlemg4.r |
|
| 6 |
|
cdlemg4.j |
|
| 7 |
|
cdlemg4b.v |
|
| 8 |
|
simpl1 |
|
| 9 |
|
simprl |
|
| 10 |
|
simpl22 |
|
| 11 |
|
simpl23 |
|
| 12 |
|
simpl31 |
|
| 13 |
|
simprr |
|
| 14 |
|
simpl1l |
|
| 15 |
|
simp22l |
|
| 16 |
15
|
adantr |
|
| 17 |
|
simprll |
|
| 18 |
|
eqid |
|
| 19 |
18 3 4 5
|
trlcl |
|
| 20 |
8 12 19
|
syl2anc |
|
| 21 |
7 20
|
eqeltrid |
|
| 22 |
|
simp22r |
|
| 23 |
22
|
adantr |
|
| 24 |
1 3 4 5
|
trlle |
|
| 25 |
8 12 24
|
syl2anc |
|
| 26 |
7 25
|
eqbrtrid |
|
| 27 |
|
simp1l |
|
| 28 |
27
|
hllatd |
|
| 29 |
28
|
adantr |
|
| 30 |
18 2
|
atbase |
|
| 31 |
15 30
|
syl |
|
| 32 |
31
|
adantr |
|
| 33 |
|
simp1r |
|
| 34 |
18 3
|
lhpbase |
|
| 35 |
33 34
|
syl |
|
| 36 |
35
|
adantr |
|
| 37 |
18 1
|
lattr |
|
| 38 |
29 32 21 36 37
|
syl13anc |
|
| 39 |
26 38
|
mpan2d |
|
| 40 |
23 39
|
mtod |
|
| 41 |
18 1 6 2
|
hlexch2 |
|
| 42 |
14 16 17 21 40 41
|
syl131anc |
|
| 43 |
|
simpl32 |
|
| 44 |
|
simp21l |
|
| 45 |
44
|
adantr |
|
| 46 |
18 2
|
atbase |
|
| 47 |
45 46
|
syl |
|
| 48 |
18 1 6
|
latlej2 |
|
| 49 |
29 47 21 48
|
syl3anc |
|
| 50 |
18 6
|
latjcl |
|
| 51 |
29 47 21 50
|
syl3anc |
|
| 52 |
18 1 6
|
latjle12 |
|
| 53 |
29 32 21 51 52
|
syl13anc |
|
| 54 |
43 49 53
|
mpbi2and |
|
| 55 |
18 2
|
atbase |
|
| 56 |
17 55
|
syl |
|
| 57 |
18 6
|
latjcl |
|
| 58 |
29 32 21 57
|
syl3anc |
|
| 59 |
18 1
|
lattr |
|
| 60 |
29 56 58 51 59
|
syl13anc |
|
| 61 |
54 60
|
mpan2d |
|
| 62 |
42 61
|
syld |
|
| 63 |
13 62
|
mtod |
|
| 64 |
|
simpl21 |
|
| 65 |
|
simpl33 |
|
| 66 |
1 2 3 4 5 6 7
|
cdlemg6a |
|
| 67 |
8 64 9 11 12 13 65 66
|
syl133anc |
|
| 68 |
1 2 3 4 5 6 7
|
cdlemg6b |
|
| 69 |
8 9 10 11 12 63 67 68
|
syl133anc |
|
| 70 |
69
|
ex |
|