Metamath Proof Explorer


Theorem cdlemj1

Description: Part of proof of Lemma J of Crawley p. 118. (Contributed by NM, 19-Jun-2013)

Ref Expression
Hypotheses cdlemj.b B=BaseK
cdlemj.h H=LHypK
cdlemj.t T=LTrnKW
cdlemj.r R=trLKW
cdlemj.e E=TEndoKW
cdlemj.l ˙=K
cdlemj.a A=AtomsK
Assertion cdlemj1 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WUhp=Vhp

Proof

Step Hyp Ref Expression
1 cdlemj.b B=BaseK
2 cdlemj.h H=LHypK
3 cdlemj.t T=LTrnKW
4 cdlemj.r R=trLKW
5 cdlemj.e E=TEndoKW
6 cdlemj.l ˙=K
7 cdlemj.a A=AtomsK
8 simp123 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WUF=VF
9 8 fveq1d KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WUFp=VFp
10 9 oveq1d KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WUFpjoinKRgF-1=VFpjoinKRgF-1
11 10 oveq2d KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WpjoinKRgmeetKUFpjoinKRgF-1=pjoinKRgmeetKVFpjoinKRgF-1
12 simp11 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WKHLWH
13 simp131 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WFT
14 simp22 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WgT
15 simp121 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WUE
16 simp33 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WpA¬p˙W
17 simp132 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WFIB
18 simp23 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WgIB
19 simp31 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WRFRg
20 eqid joinK=joinK
21 eqid meetK=meetK
22 eqid pjoinKRgmeetKUFpjoinKRgF-1=pjoinKRgmeetKUFpjoinKRgF-1
23 1 6 20 21 7 2 3 4 5 22 cdlemi KHLWHFTgTUEpA¬p˙WFIBgIBRFRgUgp=pjoinKRgmeetKUFpjoinKRgF-1
24 12 13 14 15 16 17 18 19 23 syl323anc KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WUgp=pjoinKRgmeetKUFpjoinKRgF-1
25 simp122 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WVE
26 eqid pjoinKRgmeetKVFpjoinKRgF-1=pjoinKRgmeetKVFpjoinKRgF-1
27 1 6 20 21 7 2 3 4 5 26 cdlemi KHLWHFTgTVEpA¬p˙WFIBgIBRFRgVgp=pjoinKRgmeetKVFpjoinKRgF-1
28 12 13 14 25 16 17 18 19 27 syl323anc KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WVgp=pjoinKRgmeetKVFpjoinKRgF-1
29 11 24 28 3eqtr4d KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WUgp=Vgp
30 29 oveq1d KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WUgpjoinKRhg-1=VgpjoinKRhg-1
31 30 oveq2d KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WpjoinKRhmeetKUgpjoinKRhg-1=pjoinKRhmeetKVgpjoinKRhg-1
32 simp133 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WhT
33 simp21 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WhIB
34 simp32 KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WRgRh
35 eqid pjoinKRhmeetKUgpjoinKRhg-1=pjoinKRhmeetKUgpjoinKRhg-1
36 1 6 20 21 7 2 3 4 5 35 cdlemi KHLWHgThTUEpA¬p˙WgIBhIBRgRhUhp=pjoinKRhmeetKUgpjoinKRhg-1
37 12 14 32 15 16 18 33 34 36 syl323anc KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WUhp=pjoinKRhmeetKUgpjoinKRhg-1
38 eqid pjoinKRhmeetKVgpjoinKRhg-1=pjoinKRhmeetKVgpjoinKRhg-1
39 1 6 20 21 7 2 3 4 5 38 cdlemi KHLWHgThTVEpA¬p˙WgIBhIBRgRhVhp=pjoinKRhmeetKVgpjoinKRhg-1
40 12 14 32 25 16 18 33 34 39 syl323anc KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WVhp=pjoinKRhmeetKVgpjoinKRhg-1
41 31 37 40 3eqtr4d KHLWHUEVEUF=VFFTFIBhThIBgTgIBRFRgRgRhpA¬p˙WUhp=Vhp