Description: Part of proof of Lemma J of Crawley p. 118. (Contributed by NM, 19-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemj.b | |
|
cdlemj.h | |
||
cdlemj.t | |
||
cdlemj.r | |
||
cdlemj.e | |
||
cdlemj.l | |
||
cdlemj.a | |
||
Assertion | cdlemj1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemj.b | |
|
2 | cdlemj.h | |
|
3 | cdlemj.t | |
|
4 | cdlemj.r | |
|
5 | cdlemj.e | |
|
6 | cdlemj.l | |
|
7 | cdlemj.a | |
|
8 | simp123 | |
|
9 | 8 | fveq1d | |
10 | 9 | oveq1d | |
11 | 10 | oveq2d | |
12 | simp11 | |
|
13 | simp131 | |
|
14 | simp22 | |
|
15 | simp121 | |
|
16 | simp33 | |
|
17 | simp132 | |
|
18 | simp23 | |
|
19 | simp31 | |
|
20 | eqid | |
|
21 | eqid | |
|
22 | eqid | |
|
23 | 1 6 20 21 7 2 3 4 5 22 | cdlemi | |
24 | 12 13 14 15 16 17 18 19 23 | syl323anc | |
25 | simp122 | |
|
26 | eqid | |
|
27 | 1 6 20 21 7 2 3 4 5 26 | cdlemi | |
28 | 12 13 14 25 16 17 18 19 27 | syl323anc | |
29 | 11 24 28 | 3eqtr4d | |
30 | 29 | oveq1d | |
31 | 30 | oveq2d | |
32 | simp133 | |
|
33 | simp21 | |
|
34 | simp32 | |
|
35 | eqid | |
|
36 | 1 6 20 21 7 2 3 4 5 35 | cdlemi | |
37 | 12 14 32 15 16 18 33 34 36 | syl323anc | |
38 | eqid | |
|
39 | 1 6 20 21 7 2 3 4 5 38 | cdlemi | |
40 | 12 14 32 25 16 18 33 34 39 | syl323anc | |
41 | 31 37 40 | 3eqtr4d | |