Metamath Proof Explorer


Theorem cdlemk11ta

Description: Part of proof of Lemma K of Crawley p. 118. Lemma for Eq. 5, p. 119. G , I stand for g, h. TODO: fix comment. (Contributed by NM, 21-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5c.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk5a.u2 C=eTιjT|jP=P˙Re˙SbP˙Reb-1
Assertion cdlemk11ta KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIG/gY˙I/gY˙RIG-1

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5c.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
12 cdlemk5a.u2 C=eTιjT|jP=P˙Re˙SbP˙Reb-1
13 simp11 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIKHLWH
14 simp12l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIFT
15 simp31 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIbT
16 simp21 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRINT
17 simp13l KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIGT
18 simp331 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIIT
19 16 17 18 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRINTGTIT
20 simp22 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIPA¬P˙W
21 simp23 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIRF=RN
22 simp12r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIFIB
23 simp321 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIbIB
24 simp13r KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIGIB
25 22 23 24 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIFIBbIBGIB
26 simp332 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIIIB
27 simp322 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIRbRF
28 simp323 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIRbRG
29 28 necomd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIRGRb
30 simp333 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIRbRI
31 30 necomd KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIRIRb
32 27 29 31 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIRbRFRGRbRIRb
33 eqid Sb=Sb
34 eqid GP˙IP˙RGb-1˙RIb-1=GP˙IP˙RGb-1˙RIb-1
35 1 2 3 4 5 6 7 8 11 33 12 34 cdlemk11u KHLWHFTbTNTGTITPA¬P˙WRF=RNFIBbIBGIBIIBRbRFRGRbRIRbCGP˙CIP˙RIG-1
36 13 14 15 19 20 21 25 26 32 35 syl333anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRICGP˙CIP˙RIG-1
37 simp32 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIbIBRbRFRbRG
38 15 37 jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIbTbIBRbRFRbRG
39 1 2 3 4 5 6 7 8 9 10 11 12 cdlemkyuu KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGG/gY=CGP
40 38 39 syld3an3 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIG/gY=CGP
41 simp12 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIFTFIB
42 18 26 jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIITIIB
43 simp2 KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRINTPA¬P˙WRF=RN
44 23 27 30 3jca KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIbIBRbRFRbRI
45 1 2 3 4 5 6 7 8 9 10 11 12 cdlemkyuu KHLWHFTFIBITIIBNTPA¬P˙WRF=RNbTbIBRbRFRbRII/gY=CIP
46 13 41 42 43 15 44 45 syl312anc KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRII/gY=CIP
47 46 oveq1d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRII/gY˙RIG-1=CIP˙RIG-1
48 36 40 47 3brtr4d KHLWHFTFIBGTGIBNTPA¬P˙WRF=RNbTbIBRbRFRbRGITIIBRbRIG/gY˙I/gY˙RIG-1