Metamath Proof Explorer


Theorem cdlemk11ta

Description: Part of proof of Lemma K of Crawley p. 118. Lemma for Eq. 5, p. 119. G , I stand for g, h. TODO: fix comment. (Contributed by NM, 21-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5c.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
cdlemk5a.u2 C = e T ι j T | j P = P ˙ R e ˙ S b P ˙ R e b -1
Assertion cdlemk11ta K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I G / g Y ˙ I / g Y ˙ R I G -1

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5c.s S = f T ι i T | i P = P ˙ R f ˙ N P ˙ R f F -1
12 cdlemk5a.u2 C = e T ι j T | j P = P ˙ R e ˙ S b P ˙ R e b -1
13 simp11 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I K HL W H
14 simp12l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I F T
15 simp31 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I b T
16 simp21 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I N T
17 simp13l K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I G T
18 simp331 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I I T
19 16 17 18 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I N T G T I T
20 simp22 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I P A ¬ P ˙ W
21 simp23 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I R F = R N
22 simp12r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I F I B
23 simp321 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I b I B
24 simp13r K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I G I B
25 22 23 24 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I F I B b I B G I B
26 simp332 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I I I B
27 simp322 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I R b R F
28 simp323 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I R b R G
29 28 necomd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I R G R b
30 simp333 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I R b R I
31 30 necomd K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I R I R b
32 27 29 31 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I R b R F R G R b R I R b
33 eqid S b = S b
34 eqid G P ˙ I P ˙ R G b -1 ˙ R I b -1 = G P ˙ I P ˙ R G b -1 ˙ R I b -1
35 1 2 3 4 5 6 7 8 11 33 12 34 cdlemk11u K HL W H F T b T N T G T I T P A ¬ P ˙ W R F = R N F I B b I B G I B I I B R b R F R G R b R I R b C G P ˙ C I P ˙ R I G -1
36 13 14 15 19 20 21 25 26 32 35 syl333anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I C G P ˙ C I P ˙ R I G -1
37 simp32 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I b I B R b R F R b R G
38 15 37 jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I b T b I B R b R F R b R G
39 1 2 3 4 5 6 7 8 9 10 11 12 cdlemkyuu K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G G / g Y = C G P
40 38 39 syld3an3 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I G / g Y = C G P
41 simp12 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I F T F I B
42 18 26 jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I I T I I B
43 simp2 K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I N T P A ¬ P ˙ W R F = R N
44 23 27 30 3jca K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I b I B R b R F R b R I
45 1 2 3 4 5 6 7 8 9 10 11 12 cdlemkyuu K HL W H F T F I B I T I I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R I I / g Y = C I P
46 13 41 42 43 15 44 45 syl312anc K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I I / g Y = C I P
47 46 oveq1d K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I I / g Y ˙ R I G -1 = C I P ˙ R I G -1
48 36 40 47 3brtr4d K HL W H F T F I B G T G I B N T P A ¬ P ˙ W R F = R N b T b I B R b R F R b R G I T I I B R b R I G / g Y ˙ I / g Y ˙ R I G -1