Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemk5.b |
|
2 |
|
cdlemk5.l |
|
3 |
|
cdlemk5.j |
|
4 |
|
cdlemk5.m |
|
5 |
|
cdlemk5.a |
|
6 |
|
cdlemk5.h |
|
7 |
|
cdlemk5.t |
|
8 |
|
cdlemk5.r |
|
9 |
|
cdlemk5.z |
|
10 |
|
cdlemk5.y |
|
11 |
|
cdlemk5c.s |
|
12 |
|
cdlemk5a.u2 |
|
13 |
|
simp11 |
|
14 |
|
simp12l |
|
15 |
|
simp31 |
|
16 |
|
simp21 |
|
17 |
|
simp13l |
|
18 |
|
simp331 |
|
19 |
16 17 18
|
3jca |
|
20 |
|
simp22 |
|
21 |
|
simp23 |
|
22 |
|
simp12r |
|
23 |
|
simp321 |
|
24 |
|
simp13r |
|
25 |
22 23 24
|
3jca |
|
26 |
|
simp332 |
|
27 |
|
simp322 |
|
28 |
|
simp323 |
|
29 |
28
|
necomd |
|
30 |
|
simp333 |
|
31 |
30
|
necomd |
|
32 |
27 29 31
|
3jca |
|
33 |
|
eqid |
|
34 |
|
eqid |
|
35 |
1 2 3 4 5 6 7 8 11 33 12 34
|
cdlemk11u |
|
36 |
13 14 15 19 20 21 25 26 32 35
|
syl333anc |
|
37 |
|
simp32 |
|
38 |
15 37
|
jca |
|
39 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemkyuu |
|
40 |
38 39
|
syld3an3 |
|
41 |
|
simp12 |
|
42 |
18 26
|
jca |
|
43 |
|
simp2 |
|
44 |
23 27 30
|
3jca |
|
45 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdlemkyuu |
|
46 |
13 41 42 43 15 44 45
|
syl312anc |
|
47 |
46
|
oveq1d |
|
48 |
36 40 47
|
3brtr4d |
|