| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cdlemk5.b |  | 
						
							| 2 |  | cdlemk5.l |  | 
						
							| 3 |  | cdlemk5.j |  | 
						
							| 4 |  | cdlemk5.m |  | 
						
							| 5 |  | cdlemk5.a |  | 
						
							| 6 |  | cdlemk5.h |  | 
						
							| 7 |  | cdlemk5.t |  | 
						
							| 8 |  | cdlemk5.r |  | 
						
							| 9 |  | cdlemk5.z |  | 
						
							| 10 |  | cdlemk5.y |  | 
						
							| 11 |  | cdlemk5c.s |  | 
						
							| 12 |  | cdlemk5a.u2 |  | 
						
							| 13 |  | simp11 |  | 
						
							| 14 |  | simp12l |  | 
						
							| 15 |  | simp31 |  | 
						
							| 16 |  | simp21 |  | 
						
							| 17 |  | simp13l |  | 
						
							| 18 |  | simp331 |  | 
						
							| 19 | 16 17 18 | 3jca |  | 
						
							| 20 |  | simp22 |  | 
						
							| 21 |  | simp23 |  | 
						
							| 22 |  | simp12r |  | 
						
							| 23 |  | simp321 |  | 
						
							| 24 |  | simp13r |  | 
						
							| 25 | 22 23 24 | 3jca |  | 
						
							| 26 |  | simp332 |  | 
						
							| 27 |  | simp322 |  | 
						
							| 28 |  | simp323 |  | 
						
							| 29 | 28 | necomd |  | 
						
							| 30 |  | simp333 |  | 
						
							| 31 | 30 | necomd |  | 
						
							| 32 | 27 29 31 | 3jca |  | 
						
							| 33 |  | eqid |  | 
						
							| 34 |  | eqid |  | 
						
							| 35 | 1 2 3 4 5 6 7 8 11 33 12 34 | cdlemk11u |  | 
						
							| 36 | 13 14 15 19 20 21 25 26 32 35 | syl333anc |  | 
						
							| 37 |  | simp32 |  | 
						
							| 38 | 15 37 | jca |  | 
						
							| 39 | 1 2 3 4 5 6 7 8 9 10 11 12 | cdlemkyuu |  | 
						
							| 40 | 38 39 | syld3an3 |  | 
						
							| 41 |  | simp12 |  | 
						
							| 42 | 18 26 | jca |  | 
						
							| 43 |  | simp2 |  | 
						
							| 44 | 23 27 30 | 3jca |  | 
						
							| 45 | 1 2 3 4 5 6 7 8 9 10 11 12 | cdlemkyuu |  | 
						
							| 46 | 13 41 42 43 15 44 45 | syl312anc |  | 
						
							| 47 | 46 | oveq1d |  | 
						
							| 48 | 36 40 47 | 3brtr4d |  |