Metamath Proof Explorer


Theorem cdlemk19u1

Description: cdlemk19 with simpler hypotheses. TODO: Clean all this up. (Contributed by NM, 31-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B = Base K
cdlemk5.l ˙ = K
cdlemk5.j ˙ = join K
cdlemk5.m ˙ = meet K
cdlemk5.a A = Atoms K
cdlemk5.h H = LHyp K
cdlemk5.t T = LTrn K W
cdlemk5.r R = trL K W
cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
cdlemk5.u U = g T if F = N g X
Assertion cdlemk19u1 K HL W H R F = R N F T F N N T P A ¬ P ˙ W U F P = N P

Proof

Step Hyp Ref Expression
1 cdlemk5.b B = Base K
2 cdlemk5.l ˙ = K
3 cdlemk5.j ˙ = join K
4 cdlemk5.m ˙ = meet K
5 cdlemk5.a A = Atoms K
6 cdlemk5.h H = LHyp K
7 cdlemk5.t T = LTrn K W
8 cdlemk5.r R = trL K W
9 cdlemk5.z Z = P ˙ R b ˙ N P ˙ R b F -1
10 cdlemk5.y Y = P ˙ R g ˙ Z ˙ R g b -1
11 cdlemk5.x X = ι z T | b T b I B R b R F R b R g z P = Y
12 cdlemk5.u U = g T if F = N g X
13 simp22 K HL W H R F = R N F T F N N T P A ¬ P ˙ W F N
14 simp21 K HL W H R F = R N F T F N N T P A ¬ P ˙ W F T
15 11 12 cdlemk40f F N F T U F = F / g X
16 13 14 15 syl2anc K HL W H R F = R N F T F N N T P A ¬ P ˙ W U F = F / g X
17 16 fveq1d K HL W H R F = R N F T F N N T P A ¬ P ˙ W U F P = F / g X P
18 simp1l K HL W H R F = R N F T F N N T P A ¬ P ˙ W K HL W H
19 simp23 K HL W H R F = R N F T F N N T P A ¬ P ˙ W N T
20 simp1r K HL W H R F = R N F T F N N T P A ¬ P ˙ W R F = R N
21 1 6 7 8 trlnid K HL W H F T N T F N R F = R N F I B
22 18 14 19 13 20 21 syl122anc K HL W H R F = R N F T F N N T P A ¬ P ˙ W F I B
23 14 22 19 3jca K HL W H R F = R N F T F N N T P A ¬ P ˙ W F T F I B N T
24 1 2 3 4 5 6 7 8 9 10 11 cdlemk19x K HL W H R F = R N F T F I B N T P A ¬ P ˙ W F / g X P = N P
25 23 24 syld3an2 K HL W H R F = R N F T F N N T P A ¬ P ˙ W F / g X P = N P
26 17 25 eqtrd K HL W H R F = R N F T F N N T P A ¬ P ˙ W U F P = N P