Metamath Proof Explorer


Theorem cdlemk19xlem

Description: Lemma for cdlemk19x . (Contributed by NM, 30-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
Assertion cdlemk19xlem KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFF/gXP=NP

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5.x X=ιzT|bTbIBRbRFRbRgzP=Y
12 simp1l KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFKHLWH
13 simp2l1 KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFFT
14 simp2l2 KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFFIB
15 13 14 jca KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFFTFIB
16 simp2l3 KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFNT
17 simp2r KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFPA¬P˙W
18 simp1r KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFRF=RN
19 simp3l KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFbT
20 simp3rl KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFbIB
21 simp3rr KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFRbRF
22 20 21 21 3jca KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFbIBRbRFRbRF
23 1 2 3 4 5 6 7 8 9 10 11 cdlemk42 KHLWHFTFIBFTFIBNTPA¬P˙WRF=RNbTbIBRbRFRbRFF/gXP=F/gY
24 12 15 15 16 17 18 19 22 23 syl332anc KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFF/gXP=F/gY
25 simp3 KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFbTbIBRbRF
26 1 2 3 4 5 6 7 8 9 10 cdlemk19y KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFF/gY=NP
27 12 15 16 17 18 25 26 syl231anc KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFF/gY=NP
28 24 27 eqtrd KHLWHRF=RNFTFIBNTPA¬P˙WbTbIBRbRFF/gXP=NP