Metamath Proof Explorer


Theorem cdlemk19ylem

Description: Lemma for cdlemk19y . (Contributed by NM, 30-Jul-2013)

Ref Expression
Hypotheses cdlemk5.b B=BaseK
cdlemk5.l ˙=K
cdlemk5.j ˙=joinK
cdlemk5.m ˙=meetK
cdlemk5.a A=AtomsK
cdlemk5.h H=LHypK
cdlemk5.t T=LTrnKW
cdlemk5.r R=trLKW
cdlemk5.z Z=P˙Rb˙NP˙RbF-1
cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
cdlemk5c.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
cdlemk5a.u2 C=eTιjT|jP=P˙Re˙SbP˙Reb-1
Assertion cdlemk19ylem KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFF/gY=NP

Proof

Step Hyp Ref Expression
1 cdlemk5.b B=BaseK
2 cdlemk5.l ˙=K
3 cdlemk5.j ˙=joinK
4 cdlemk5.m ˙=meetK
5 cdlemk5.a A=AtomsK
6 cdlemk5.h H=LHypK
7 cdlemk5.t T=LTrnKW
8 cdlemk5.r R=trLKW
9 cdlemk5.z Z=P˙Rb˙NP˙RbF-1
10 cdlemk5.y Y=P˙Rg˙Z˙Rgb-1
11 cdlemk5c.s S=fTιiT|iP=P˙Rf˙NP˙RfF-1
12 cdlemk5a.u2 C=eTιjT|jP=P˙Re˙SbP˙Reb-1
13 simp1l KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFKHLWH
14 simp1r KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFFTFIB
15 simp2 KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFNTPA¬P˙WRF=RN
16 simp3l KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFbT
17 simp3rl KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFbIB
18 simp3rr KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFRbRF
19 17 18 18 3jca KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFbIBRbRFRbRF
20 1 2 3 4 5 6 7 8 9 10 11 12 cdlemkyuu KHLWHFTFIBFTFIBNTPA¬P˙WRF=RNbTbIBRbRFRbRFF/gY=CFP
21 13 14 14 15 16 19 20 syl312anc KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFF/gY=CFP
22 simp1rl KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFFT
23 simp1rr KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFFIB
24 eqid Sb=Sb
25 1 2 3 4 5 6 7 8 11 24 12 cdlemk19 KHLWHFTbTNTPA¬P˙WRF=RNFIBbIBRbRFCF=N
26 13 22 16 15 23 17 18 25 syl313anc KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFCF=N
27 26 fveq1d KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFCFP=NP
28 21 27 eqtrd KHLWHFTFIBNTPA¬P˙WRF=RNbTbIBRbRFF/gY=NP