Description: Lemma for cdlemk19y . (Contributed by NM, 30-Jul-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemk5.b | |
|
cdlemk5.l | |
||
cdlemk5.j | |
||
cdlemk5.m | |
||
cdlemk5.a | |
||
cdlemk5.h | |
||
cdlemk5.t | |
||
cdlemk5.r | |
||
cdlemk5.z | |
||
cdlemk5.y | |
||
cdlemk5c.s | |
||
cdlemk5a.u2 | |
||
Assertion | cdlemk19ylem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemk5.b | |
|
2 | cdlemk5.l | |
|
3 | cdlemk5.j | |
|
4 | cdlemk5.m | |
|
5 | cdlemk5.a | |
|
6 | cdlemk5.h | |
|
7 | cdlemk5.t | |
|
8 | cdlemk5.r | |
|
9 | cdlemk5.z | |
|
10 | cdlemk5.y | |
|
11 | cdlemk5c.s | |
|
12 | cdlemk5a.u2 | |
|
13 | simp1l | |
|
14 | simp1r | |
|
15 | simp2 | |
|
16 | simp3l | |
|
17 | simp3rl | |
|
18 | simp3rr | |
|
19 | 17 18 18 | 3jca | |
20 | 1 2 3 4 5 6 7 8 9 10 11 12 | cdlemkyuu | |
21 | 13 14 14 15 16 19 20 | syl312anc | |
22 | simp1rl | |
|
23 | simp1rr | |
|
24 | eqid | |
|
25 | 1 2 3 4 5 6 7 8 11 24 12 | cdlemk19 | |
26 | 13 22 16 15 23 17 18 25 | syl313anc | |
27 | 26 | fveq1d | |
28 | 21 27 | eqtrd | |